Skip to main content
Log in

Coexistence of Psychrophilic, Mesophilic, and Thermophilic Sulfate-Reducing Bacteria in a Deep Subsurface Aquifer Associated with Coal-Bed Methane Production

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The microbial community of subsurface environments remains understudied due to limited access to deep strata and aquifers. Coal-bed methane (CBM) production is associated with a large number of wells pumping water out of coal seams. CBM wells provide access to deep biotopes associated with coal-bed water. Temperature is one of the key constraints for the distribution and activity of subsurface microorganisms, including sulfate-reducing prokaryotes (SRP). The 16S rRNA gene amplicon sequencing coupled with in situ sulfate reduction rate (SRR) measurements with a radioactive tracer and cultivation at various temperatures revealed that the SRP community of the coal bed water of the Kuzbass coal basin is characterized by an overlapping mesophilic-psychrophilic boundary. The genus Desulfovibrio comprised a significant share of the SRP community. The D. psychrotolerans strain 1203, which has a growth optimum below 20 °C, dominated the cultivated SRP. SRR in coal bed water varied from 0.154 ± 0.07 to 2.04 ± 0.048 nmol S cm−3 day−1. Despite the ambient water temperature of ~ 10–20 °C, an active thermophilic SRP community occurred in the fracture water, which reduced sulfate with the rate of 0.159 ± 0.023 to 0.198 ± 0.007 nmol S cm−3 day−1 at 55 °C. A novel moderately thermophilic “Desulforudis audaxviator”-clade SRP has been isolated in pure culture from the coal-bed water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The GenBank accession number for the 16S rRNA gene sequences of Desulfovibrio sp. strain 1203, Desulfomicrobium sp. strain 1260, and Peptococaceae bacterium strain 1190 are OP565011, OP579167, and OP647315, respectively.

References

  1. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci U S A115:6506-6511. https://doi.org/10.1073/pnas.1711842115

  2. Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16. https://doi.org/10.1111/j.1574-6968.2000.tb09033.x

    Article  CAS  PubMed  Google Scholar 

  3. Teske A, Callaghan AV, LaRowe DE (2014) Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Front Microbiol 5:362. https://doi.org/10.3389/fmicb.2014.00362

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang G, Dong H, Xu Z, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. Appl Environ Microbiol 71:3213–3227. https://doi.org/10.1128/AEM.71.6.3213-3227.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pashin JC, McIntyre MR (2003) Temperature–pressure conditions in coalbed methane reservoirs of the Black Warrior basin: implications for carbon sequestration and enhanced coalbed methane recovery. Int J Coal Geol 54:167–183. https://doi.org/10.1016/S0166-5162(03)00034-X

    Article  CAS  Google Scholar 

  6. Slobodkin AI, Slobodkina GB (2014) Thermophilic prokaryotes from deep subterranean habitats. Microbiol 83:169–183. https://doi.org/10.1134/S0026261714030151

    Article  CAS  Google Scholar 

  7. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E, Southam G, Wanger G, Baker BJ, Pfiffner SM, Lin LH, Onstott TC (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8783. https://doi.org/10.1128/AEM.71.12.8773-8783.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miao Z, Brusseau ML, Carroll KC, Carreón-Diazconti C, Johnson B (2012) Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34:539–550. https://doi.org/10.1007/s10653-011-9423-1

    Article  CAS  PubMed  Google Scholar 

  9. Kadnikov VV, Mardanov AV, Beletsky AV, Banks D, Pimenov NV, Frank YA, Karnachuk OV, Ravin NV (2018) A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition. FEMS Microbiol Ecol 94(10). https://doi.org/10.1093/femsec/fiy152

  10. Karnachuk OV, Frank YA, Lukina AP, Kadnikov VV, Beletsky AV, Mardanov AV, Ravin NV (2019) Domestication of previously uncultivated Candidatus Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution. ISME J 13:1947–1959. https://doi.org/10.1038/s41396-019-0402-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV (2020) Microbial life in the deep subsurface aquifer illuminated by metagenomics. Front Microbiol 11:572252. https://doi.org/10.3389/fmicb.2020.572252

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jones EJ, Voytek MA, Corum MD, Orem WH (2010) Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Appl Environ Microbiol 76:7013–7022. https://doi.org/10.1128/AEM.00728-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ritter D, Vinson D, Barnhart E, Akob DM, Fields MW, Cunningham AB, Orem W, McIntosh JC (2015) Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges. Int J Coal Geol 146:28–41. https://doi.org/10.1016/j.coal.2015.04.013

    Article  CAS  Google Scholar 

  14. Beckmann S, Luk AWS, Gutierrez-Zamora ML, Chong NHH, Thomas T, Lee M, Manefield M (2019) Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. ISME J13:632–650. https://doi.org/10.1038/s41396-018-0296-5

    Article  CAS  Google Scholar 

  15. Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45:187–192. https://doi.org/10.1128/aem.45.1.187-192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirk MF, Martini AM, Breecker DO, Colman DR, Takacs-Vesbach C, Petsch ST (2012) Impact of commercial natural gas production on geochemistry and microbiology in a shale-gas reservoir. Chem Geol 332–333:15–25. https://doi.org/10.1016/j.chemgeo.2012.08.032

    Article  CAS  Google Scholar 

  17. Kadnikov VV, Mardanov AV, Beletsky AV, Rakitin AL, Frank YA, Karnachuk OV, Ravin NV (2019) Phylogeny and physiology of candidate phylum BRC1 inferred from the first complete metagenome-assembled genome obtained from deep subsurface aquifer. Syst Appl Microbiol 42:67–76. https://doi.org/10.1016/j.syapm.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  18. Detmers J, Schulte U, Strauss H, Kuever J (2001) Sulfate reduction at a lignite seam: microbial abundance and activity. Microb Ecol 42:238–247. https://doi.org/10.1007/s00248-001-1014-8

    Article  CAS  PubMed  Google Scholar 

  19. Panova IA, Rusanov II, Kadnikov VV, Latygolets EA, Avakyan MR, Ivanov MV, Zyusman VS, Kovaleva AA, Ravin NV, Pimenov NV, Karnachuk OV (2020) Sulfate reduction in underground horizons of a flooded coal mine in Kuzbass. Microbiology 89:542–550. https://doi.org/10.1134/S0026261720050185

    Article  CAS  Google Scholar 

  20. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2009) Environmental genomics revealed single-species ecosystem deep within Earth. Science 322:275–278. https://doi.org/10.1126/science.1155495

    Article  CAS  Google Scholar 

  21. Labonté JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, Kieft TL, Onstott TC, Stepanauskas R (2015) Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol 6:349. https://doi.org/10.3389/fmicb.2015.00349

    Article  PubMed  PubMed Central  Google Scholar 

  22. Davidson MM, Silver BJ, Onstott TC, Moser DP, Gihring TM, Pratt LM, Boice EA, Barbara Sherwood Lollar BS, Lippmann-Pipke J, Pfiffner SM, Kieft TL, Seymore W, Ralston C (2011) Capture of planktonic microbial diversity in fractures by long-term monitoring of flowing boreholes, Evander Basin, South Africa. Geomicrobiol J 28:275–300. https://doi.org/10.1080/01490451.2010.499928

    Article  Google Scholar 

  23. Magnabosco C, Tekere M, Lau MC, Linage B, Kuloyo O, Erasmus M, Cason E, van Heerden E, Borgonie G, Kieft TL, Olivier J, Onstott TC (2014) Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 5:679. https://doi.org/10.3389/fmicb.2014.00679

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tiago I, Veríssimo A (2013) Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ Microbiol 15:1687–1706. https://doi.org/10.1111/1462-2920.12034

    Article  CAS  PubMed  Google Scholar 

  25. Kjeldsen KU, Kjellerup BV, Egli K, Frølund B, Nielsen PH, Ingvorsen K (2007) Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system. FEMS Microbiol Ecol 61:384–397. https://doi.org/10.1111/j.1574-6941.2006.00255.x

    Article  CAS  PubMed  Google Scholar 

  26. Becraft ED, Lau Vetter MCY, Bezuidt OKI, Brown JM, Labonté JM, Kauneckaite-Griguole K, Salkauskaite R, Alzbutas G, Sackett JD, Kruger BR, Kadnikov V, van Heerden E, Moser D, Ravin N, Onstott T, Stepanauskas R (2021) Evolutionary stasis of a deep subsurface microbial lineage. ISME J 15:2830–2842. https://doi.org/10.1038/s41396-021-00965-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Domrocheva EV, Kuzevanov KI, Gridasov AG, Sizikov DA (2018) Hydrogeological conditions of Naryk-Ostashkin area in Erunakova region in Kuzbass. Bulletin of Tomsk Polytechnic University. Geo Assets Eng 329:134–142. https://doi.org/10.18799/24131830/2018/9/2096.

  28. Karnachuk OV, Pimenov NV, Iusupov SK, Frank IuA, Puhakka JA, Ivanov MV (2006) Distribution, diversity, and activity of sulfate-reducing bacteria in the water column in Gek-Gel Lake Azerbaijan. Mikrobiol 75:101–109. https://doi.org/10.1134/S0026261706010152

    Article  CAS  Google Scholar 

  29. Widdel FF, Bak R (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, Berlin, pp 3352–3378

    Google Scholar 

  30. Lukina AP, Karnachuk OV (2021) A novel medium for cultivation of “Desulforudis audaxviator”. Microbiol 90:401–404. https://doi.org/10.1134/S0026261721030073

    Article  CAS  Google Scholar 

  31. Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, Hartmann M (2016) Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol 92:fiw018. https://doi.org/10.1093/femsec/fiw018

    Article  CAS  PubMed  Google Scholar 

  32. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  34. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. Peer J 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228. https://doi.org/10.1128/aem.33.5.1225-1228.1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blackwell DD, Richards M (2004) Geothermal Map of North America, AAPG Map, scale 1:6,500,000, Product Code 423. https://www.smu.edu/dedman/academics/departments/earthsciences/research/geothermallab/datamaps/geothermalmapofnorthamerica

  37. Karnachuk OV, Rusanov II, Panova IA, Grigoriev MA, Zyusman VS, Latygolets EA, Kadyrbaev MK, Gruzdev EV, Beletsky AV, Mardanov AV, Pimenov NV, Ravin NV (2021) Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility. Sci Rep 11:10720. https://doi.org/10.1038/s41598-021-90256-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Bacteriol 45:454–461. https://doi.org/10.1099/00207713-45-3-454

    Article  CAS  PubMed  Google Scholar 

  39. Panova IA, Grigoriev MA, Glukhova LB, Avakyan MR, Karnachuk OV (2021) Isolation of a novel chemolithothrophic sulfate-reducing Firmicute from a Tyumen thermal borehole. Microbiol 90:397–400. https://doi.org/10.1134/S0026261721030097

    Article  CAS  Google Scholar 

  40. Jørgensen B (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645. https://doi.org/10.1038/296643a0

    Article  Google Scholar 

  41. Frank YA, Kadnikov VV, Gavrilov SN, Banks D, Gerasimchuk AL, Podosokorskaya OA, Merkel AY, Chernyh NA, Mardanov AV, Ravin NV, Karnachuk OV, Bonch-Osmolovskaya EA (2016) Stable and variable parts of microbial community in Siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study. Front Microbiol 7:2101. https://doi.org/10.3389/fmicb.2016.02101

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vick SHW, Greenfield P, Pinetown KL, Sherwood N, Gong S, Tetu SG, Midgley DJ, Paulsen IT (2019) Succession patterns and physical niche partitioning in microbial communities from subsurface coal seams. iScience 12:152–167. https://doi.org/10.1016/j.isci.2019.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sasi Jyothsna TS, Sasikala Ch, Ramana ChV (2009) Desulfovibrio psychrotolerans sp. nov., a psychrotolerant and moderately alkaliphilic sulfate-reducing deltaproteobacterium from the Himalayas. Int J Syst Evol Microbiol 58:821–825. https://doi.org/10.1099/ijs.0.65402-0

    Article  CAS  Google Scholar 

  44. Maity JP, Liu CC, Nath B, Bundschuh J, Kar S, Jean JS, Bhattacharya P, Liu JH, Atla SB, Chen CY (2011) Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1207–1217. https://doi.org/10.1080/10934529.2011.598788

    Article  CAS  PubMed  Google Scholar 

  45. Lukina AP, Frank YA, Ivasenko DA, Glukhova LB, Danilova EV, Avakyan MR, Karnachuk OV (2019) Isolation of new thermophilic sulfidogens from microbial mat associated with groundwater discharge in the Tunkin valley. Microbiol 88:642–645. https://doi.org/10.1134/S0026261719050096

    Article  CAS  Google Scholar 

  46. Mullin SW, Wanger G, Kruger BR, Sackett JD, Hamilton-Brehm SD, Bhartia R, Amend JP, Moser DP, Orphan VJ (2020) Patterns of in situ mineral colonization by microorganisms in a ~60°C deep continental subsurface aquifer. Front Microbiol 11:536535. https://doi.org/10.3389/fmicb.2020.536535

    Article  PubMed  PubMed Central  Google Scholar 

  47. O’Sullivan LA, Roussel EG, Weightman AJ, Webster G, Hubert CRJ, Bell E, Head I, Sass H, Parkes RJ (2015) Survival of Desulfotomaculum spores from estuarine sediments after serial autoclaving and high-temperature exposure. ISME J 9:922–933. https://doi.org/10.1038/ismej.2014.190

    Article  CAS  PubMed  Google Scholar 

  48. Li D, Hendry P, Faiz M (2008) A survey of the microbial populations in some Australian coalbed methane reservoirs. Int J Coal Geol 76:14–24. https://doi.org/10.1016/j.coal.2008.04.007

    Article  CAS  Google Scholar 

  49. Shimizu S, Akiyama M, Naganuma T, Fujioka M, Nako M, Ishijima Y (2007) Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiol 5:423–433. https://doi.org/10.1111/j.1472-4669.2007.00123.x

    Article  CAS  Google Scholar 

  50. Gründger F, Jiménez N, Thielemann T, Straaten N, Lüders T, Richnow HH, Krüger M (2015) Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin. Germany Front Microbiol 6:200. https://doi.org/10.3389/fmicb.2015.00200

    Article  PubMed  Google Scholar 

  51. Bin Hudari MS, Vogt C, Richnow HH (2022) Sulfidic acetate mineralization at 45°C by an aquifer microbial community: key players and effects of heat changes on activity and community structure. Environ Microbiol 24:370–389. https://doi.org/10.1111/1462-2920.15852

    Article  CAS  PubMed  Google Scholar 

  52. Ding A, Quan L, Guo X, Wang H, Wen Y, Liu J, Zhang L, Zhang D, Lu P (2021) Storage strategy for shale gas flowback water based on non-bactericide microorganism control. Sci Total Environ 798:149187. https://doi.org/10.1016/j.scitotenv.2021.149187

    Article  CAS  PubMed  Google Scholar 

  53. Ben Hania W, Postec A, Aüllo T, Ranchou-Peyruse A, Erauso G, Brochier-Armanet C, Hamdi M, Ollivier B, Saint-Laurent S, Magot M, Fardeau ML (2013) Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer. Int J Syst Evol Microbiol 63:3003–3008. https://doi.org/10.1099/ijs.0.047993-0

    Article  CAS  PubMed  Google Scholar 

  54. Ben Hania W, Ghodbane R, Postec A, Brochier-Armanet C, Hamdi M, Fardeau ML, Ollivier B (2011) Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. Syst Appl Microbiol 34:581–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ltd Gazprom Dobycha Kuznetsk for providing access to the coal-bed methane wells and assistance on the sampling site. Special thanks to the editor and anonymous reviewers for comments on improving the manuscript.

Funding

This study was supported by the Russian Science Foundation projects 21–14-00114 to O.V.K. (sampling, sulfate reduction rate measurement, cultivation, 16S rRNA profiling of the enrichments) and 22–14-00178 to N.V.R. (16S rRNA gene profiling).

Author information

Authors and Affiliations

Authors

Contributions

OVK planned the study, prepared and wrote the original draft. NVR wrote the original draft. IAP isolated SRB pure cultures and studied their characteristics. IIR measured the in situ sulfate reduction rate with radioactive tracer. LS isolated SRB pure cultures and studied their characteristics. OYL planned the study. EVD sampled coal-bed water and analyzed physicochemical parameters. LBG isolated and amplified DNA from the cultures. APL sampled coal-bed water and analyzed physicochemical parameters. NVP planned the study and measured the in situ sulfate reduction rate with radioactive tracer. VVK sequenced DNA and performed 16S rRNA gene profiling. MRA carried out phylogenetic analysis. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Olga V. Karnachuk.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 204 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnachuk, O.V., Panova, I.A., Rusanov, I.I. et al. Coexistence of Psychrophilic, Mesophilic, and Thermophilic Sulfate-Reducing Bacteria in a Deep Subsurface Aquifer Associated with Coal-Bed Methane Production. Microb Ecol 86, 1934–1946 (2023). https://doi.org/10.1007/s00248-023-02196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02196-9

Keywords

Navigation