Skip to main content

Advertisement

Log in

Prokaryotic, Microeukaryotic, and Fungal Composition in a Long-Term Polychlorinated Biphenyl-Contaminated Brownfield

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyls (PCBs) are recognized as persistent organic pollutants and accumulate in organisms, soils, waters, and sediments, causing major health and ecological perturbations. Literature reported PCB bio-transformation by fungi and bacteria in vitro, but data about the in situ impact of those compounds on microbial communities remained scarce while being useful to guide biotransformation assays. The present work investigated for the first time microbial diversity from the three-domains-of-life in a long-term contaminated brownfield (a former factory land). Soil samples were ranked according to their PCB concentrations, and a significant increase in abundance was shown according to increased concentrations. Microbial communities structure showed a segregation from the least to the most PCB-polluted samples. Among the identified microorganisms, Bacteria belonging to Gammaproteobacteria class, as well as Fungi affiliated to Saccharomycetes class or Pleurotaceae family, including some species known to transform some PCBs were abundantly retrieved in the highly polluted soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

All data that support findings of this study have been deposited in European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/view/PRJEB46614) under reference PRJEB46614 for 16S rRNA dataset, PRJEB46555 and PRJEB46556 for ITS regions and eukaryotic 18S rRNA genes, respectively.

References

  1. Wall DH, Behan-Pelletier V, Jones TH, et al (2012) Soil ecology and ecosystem services. OUP Oxford

  2. Beaudette LA, Davies S, Fedorak PM et al (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Env Microbiol 64:2020–2025

    Article  CAS  Google Scholar 

  3. Weltgesundheitsorganisation, International Programme on Chemical Safety, Inter-Organization Programme for the Sound Management of Chemicals (2003) Polychlorinated biphenyls: human health aspects. World Health Organization, Geneva

    Google Scholar 

  4. Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. https://doi.org/10.1007/s002530100745

    Article  CAS  PubMed  Google Scholar 

  5. Arbon RE, Mincher BJ, Knighton WB (1994) Gamma-ray destruction of individual PCB congeners in neutral 2-propanol. Environ Sci Technol 28:2191–2196. https://doi.org/10.1021/es00061a030

    Article  CAS  PubMed  Google Scholar 

  6. Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138. https://doi.org/10.1159/000121325

    Article  CAS  PubMed  Google Scholar 

  7. Stella T, Covino S, Čvančarová M et al (2017) Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater 324:701–710. https://doi.org/10.1016/j.jhazmat.2016.11.044

    Article  CAS  PubMed  Google Scholar 

  8. Tigini V, Prigione V, Di Toro S et al (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Factories 8:5–19. https://doi.org/10.1186/1475-2859-8-5

    Article  CAS  Google Scholar 

  9. Germain J, Raveton M, Binet MN, Mouhamadou B (2021) Screening and metabolic potential of fungal strains isolated from contaminated soil and sediment in the polychlorinated biphenyl degradation. Ecotoxicol Environ Saf 208:111703. https://doi.org/10.1016/j.ecoenv.2020.111703

    Article  CAS  PubMed  Google Scholar 

  10. Hashmi MZ, Qin Z, Yao X et al (2016) PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions. Environ Sci Pollut Res 23:3907–3913. https://doi.org/10.1007/s11356-015-5577-1

    Article  CAS  Google Scholar 

  11. Sharma JK, Gautam RK, Nanekar SV et al (2018) Advances and perspective in bioremediation of polychlorinated biphenyls contaminated soils. Environ Sci Pollut Res Int 25:16355–16375. https://doi.org/10.1007/s11356-017-8995-4

    Article  CAS  PubMed  Google Scholar 

  12. Pino NJ, Múnera LM, Peñuela GA (2019) Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. Int J Phytoremediation 21:316–324. https://doi.org/10.1080/15226514.2018.1524832

    Article  CAS  PubMed  Google Scholar 

  13. Steliga T, Wojtowicz K, Kapusta P, Brzeszcz J (2020) Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules 25:709. https://doi.org/10.3390/molecules25030709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013. https://doi.org/10.1016/j.procbio.2004.08.006

    Article  CAS  Google Scholar 

  15. Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 105:433–449. https://doi.org/10.1263/jbb.105.433

    Article  CAS  PubMed  Google Scholar 

  16. Sietmann R, Gesell M, Hammer E, Schauer F (2006) Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere 64:672–685. https://doi.org/10.1016/j.chemosphere.2005.10.050

    Article  CAS  PubMed  Google Scholar 

  17. Kohlmeier S, Smits THM, Ford RM et al (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646. https://doi.org/10.1021/es047979z

    Article  CAS  PubMed  Google Scholar 

  18. Wei Y, Wang X, Liu J et al (2011) The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proc Natl Acad Sci 108:4047–4052. https://doi.org/10.1073/pnas.1013499108

    Article  PubMed  PubMed Central  Google Scholar 

  19. Čvančarová M, Křesinová Z, Filipová A et al (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88:1317–1323. https://doi.org/10.1016/j.chemosphere.2012.03.107

    Article  CAS  PubMed  Google Scholar 

  20. Mouhamadou B, Faure M, Sage L et al (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274. https://doi.org/10.1016/j.funbio.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  21. Sage L, Périgon S, Faure M et al (2014) Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment. Chemosphere 110:62–69. https://doi.org/10.1016/j.chemosphere.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  22. Zenteno-Rojas A, Martínez-Romero E, Castañeda-Valbuena D et al (2020) Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Express 10:124. https://doi.org/10.1186/s13568-020-01058-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding N, Hayat T, Wang J et al (2011) Responses of microbial community in rhizosphere soils when ryegrass was subjected to stress from PCBs. J Soils Sediments 11:1355–1362. https://doi.org/10.1007/s11368-011-0412-x

    Article  CAS  Google Scholar 

  24. Marchal C, Germain J, Raveton M et al (2021) Molecular characterization of fungal biodiversity in long-term polychlorinated biphenyl-contaminated soils. Microorganisms 9:2051. https://doi.org/10.3390/microorganisms9102051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cébron A, Beguiristain T, Bongoua-Devisme J et al (2015) Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ Sci Pollut Res 22:13724–13738. https://doi.org/10.1007/s11356-015-4117-3

    Article  CAS  Google Scholar 

  26. Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261. https://doi.org/10.1128/aem.43.6.1256-1261.1982

    Article  PubMed  PubMed Central  Google Scholar 

  27. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  28. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4:e7401. https://doi.org/10.1371/journal.pone.0007401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Russo DA, Couto N, Beckerman AP, Pandhal J (2016) A metaproteomic analysis of the response of a freshwater microbial community under nutrient enrichment. Front Microbiol 7:1172. https://doi.org/10.3389/fmicb.2016.01172

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hugoni M, Escalas A, Bernard C et al (2018) Spatiotemporal variations in microbial diversity across the three domains of life in a tropical thalassohaline lake (Dziani Dzaha, Mayotte Island). Mol Ecol 27:4775–4786. https://doi.org/10.1111/mec.14901

    Article  PubMed  Google Scholar 

  31. Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mahé F, Rognes T, Quince C et al (2014) Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2:e593

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bokulich NA, Subramanian S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. https://doi.org/10.1038/nmeth.2276

    Article  CAS  PubMed  Google Scholar 

  34. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Glöckner FO, Yilmaz P, Quast C et al (2017) 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol 261:169–176. https://doi.org/10.1016/j.jbiotec.2017.06.1198

    Article  CAS  PubMed  Google Scholar 

  37. Escudié F, Auer L, Bernard M, et al (2017) FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx791

  38. Gower JC (1971) A General Coefficient of Similarity and Some of Its Properties. Biometrics, pp 857–871

  39. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  40. R Development Core Team (2010) a language and environment for statistical computing: reference index. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  41. Wickham H (2010) A Layered Grammar of Graphics. J Comput Graph Stat 19:3–28. https://doi.org/10.1198/jcgs.2009.07098

    Article  Google Scholar 

  42. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:9

    Google Scholar 

  43. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x

    Article  CAS  PubMed  Google Scholar 

  44. Mackova M, Prouzova P, Stursa P et al (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 16:817–829. https://doi.org/10.1007/s11356-009-0240-3

    Article  CAS  Google Scholar 

  45. Hu J, Qian M, Zhang Q et al (2015) Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS ONE 10:e0122740. https://doi.org/10.1371/journal.pone.0122740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muzikář M, Křesinová Z, Svobodová K et al (2011) Biodegradation of chlorobenzoic acids by ligninolytic fungi. J Hazard Mater 196:386–394. https://doi.org/10.1016/j.jhazmat.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  47. Ruiz-aguilar GML, Fern JM, Rodrıguez-vazquez R, Poggi-varaldo H (2001) Degradation by white-rot fungi of high concentrations of PCB

  48. Vyas BRM, Šašek V, Matucha M, Bubner M (1994) Degradation of 3,3′,4,4′-tetrachlorobiphenyl by selected white rot fungi. Chemosphere 28:1127–1134. https://doi.org/10.1016/0045-6535(94)90331-X

    Article  CAS  Google Scholar 

  49. Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochem Rev 8:505–518. https://doi.org/10.1007/s11101-009-9137-5

    Article  CAS  Google Scholar 

  50. Khalid F, Hashmi MZ, Jamil N, et al (2021) Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. Environ Sci Pollut Res 28:.https://doi.org/10.1007/s11356-020-11996-2

  51. Matturro B, Mascolo G, Rossetti S (2020) Microbiome changes and oxidative capability of an anaerobic PCB dechlorinating enrichment culture after oxygen exposure. New Biotechnol 56:96–102. https://doi.org/10.1016/j.nbt.2019.12.004

    Article  CAS  Google Scholar 

  52. Romero MC, Reinoso EH, Moreno Kiernan A, Urrutia MI (2006) Chlorinated biphenyl degradation by wild yeasts pre-cultured in biphasic systems. Electron J Biotechnol 9:0-0.https://doi.org/10.4067/S0717-34582006000300013

  53. Périgon S, Massier M, Germain J et al (2019) Metabolic adaptation of fungal strains in response to contamination by polychlorinated biphenyls. Environ Sci Pollut Res 26:14943–14950. https://doi.org/10.1007/s11356-019-04701-5

    Article  CAS  Google Scholar 

  54. Cervantes-González E, Guevara-García MA, García-Mena J, Ovando-Medina VM (2019) Microbial diversity assessment of polychlorinated biphenyl–contaminated soils and the biostimulation and bioaugmentation processes. Environ Monit Assess 191:118. https://doi.org/10.1007/s10661-019-7227-4

    Article  CAS  PubMed  Google Scholar 

  55. Jayamani I, Cupples AM (2015) Stable isotope probing and high-throughput sequencing implicate Xanthomonadaceae and Rhodocyclaceae in ethylbenzene degradation. Environ Eng Sci 32:240–249. https://doi.org/10.1089/ees.2014.0456

    Article  CAS  Google Scholar 

  56. Nogales B, Moore ERB, Abraham W-R, Timmis KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol 1:199–212. https://doi.org/10.1046/j.1462-2920.1999.00024.x

    Article  CAS  PubMed  Google Scholar 

  57. McGenity TJ (2019) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Springer International Publishing, Cham

    Book  Google Scholar 

  58. Gonzalez E, Pitre FE, Pagé AP et al (2018) Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. Microbiome 6:53. https://doi.org/10.1186/s40168-018-0432-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kong M, St-Arnaud M, Hijri M, Laliberté É (2016) Biodiversity of arbuscular mycorrhizal fungi from extreme petroleum hydrocarbon contaminated site. 65

  60. Budzinski JW, Foster BC, Vandenhoek S, Arnason JT (2000) An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures. Phytomedicine 7:273–282. https://doi.org/10.1016/S0944-7113(00)80044-6

    Article  CAS  PubMed  Google Scholar 

  61. Barhoumi B, LeMenach K, Dévier M-H et al (2014) Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environ Sci Pollut Res 21:6290–6302. https://doi.org/10.1007/s11356-013-1709-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jean Thioulouse (LBBE—UMR CNRS 5558—Villeurbanne) for helpful discussions.

Funding

This work was supported by the French MITI-CNRS [urban ecosystem—AAP 2019], EC2CO – CNRS [CNRS INSU—AAP 2020] and French Auvergne-Rhône-Alpes AURA Region [Pack Ambition Recherche 2021] programs. F. Maucourt PhD was supported by a Research and Technology French National association ANRT and Envisol fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by F. Maucourt, A. Cébron, H. Budzinski, K. Le Ménach, L. Peluhet, D. Chapulliot, L. Vallon, S. Czarnes, and M. Hugoni. Data analyses were performed by F. Maucourt, A. Cébron, M. Hugoni, and L. Fraissinet-Tachet. The first draft of the manuscript was written by F. Maucourt, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laurence Fraissinet-Tachet.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3028 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maucourt, F., Cébron, A., Budzinski, H. et al. Prokaryotic, Microeukaryotic, and Fungal Composition in a Long-Term Polychlorinated Biphenyl-Contaminated Brownfield. Microb Ecol 86, 1696–1708 (2023). https://doi.org/10.1007/s00248-022-02161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02161-y

Keywords

Profiles

  1. Flavien Maucourt
  2. Mylène Hugoni