Skip to main content

Advertisement

Log in

Non-native Plant Species Invasion Increases the Importance of Deterministic Processes in Fungal Community Assembly in a Coastal Wetland

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw sequences have been deposited in the DNA Data Bank of Japan under accession number DRA014566.

References

  1. Li J, Delgado-Baquerizo M, Wang JT, Hu HW, Cai ZJ, Zhu YN, Singh BK (2019) Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biol Biochem 136:107526

    Article  CAS  Google Scholar 

  2. Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol 4:210–220

    Article  PubMed  Google Scholar 

  3. Kim J, Heo YM, Yun J, Lee H, Kim JJ, Kang H (2022) Changes in archaeal community and activity by the invasion of spartina anglica along soil depth profiles of a coastal wetland. Microb Ecol 83:436–446

    Article  CAS  PubMed  Google Scholar 

  4. Yarwood SA (2018) The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol 94:fiy175

    Article  CAS  Google Scholar 

  5. Zhang J, Li T, Jia J, Zhang J, Zhang F (2021) Bacterial taxa and fungal diversity are the key factors determining soil multifunctionality in different cropping systems. Land Degrad Dev 32:5012–5022

    Article  Google Scholar 

  6. Liu M, Feng F, Cai T, Tang S (2022) Fungal community diversity dominates soil multifunctionality in freeze-thaw events. CATENA 214:106241

    Article  Google Scholar 

  7. Li J, Cui L, Delgado-Baquerizo M, Wang J, Zhu Y, Wang R, Li W, Lei Y, Zhai X, Zhao X, Singh BK (2022) Fungi drive soil multifunctionality in the coastal salt marsh ecosystem. Sci Total Environ 818:151673

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol Biol R 81:e00002-00017

    Google Scholar 

  9. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11:4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang L, Chen L, Zhang D, Peng Y, Song Y, Kou D, Deng Y, Yang Y (2022) Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environ Microbiol 24:179–194

    Article  PubMed  Google Scholar 

  12. Zhang ZF, Pan YP, Liu Y, Li M, Druzhinina IS (2021) High-level diversity of basal fungal lineages and the control of fungal community assembly by stochastic processes in mangrove sediments. Appl Environ Microb 87:e00928-e921

    Article  CAS  Google Scholar 

  13. Guo J, Ling N, Chen Z, Xue C, Li L, Liu L, Gao L, Wang M, Ruan J, Guo S, Vandenkoornhuyse P, Shen Q (2020) Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytol 226:232–243

    Article  PubMed  Google Scholar 

  14. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiao S, Chu H, Zhang B, Wei X, Chen W, Wei G (2022) Linking soil fungi to bacterial community assembly in arid ecosystems. iMeta 1:e2

    Article  Google Scholar 

  16. Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520

    Article  CAS  Google Scholar 

  17. Ricciardi A, Blackburn TM, Carlton JT, Dick JT, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ (2017) Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32:464–474

    Article  PubMed  Google Scholar 

  18. Kim J, Chaudhary DR, Lee J, Byun C, Ding W, Kwon BO, Khim JS, Kang H (2020) Microbial mechanism for enhanced methane emission in deep soil layer of Phragmites-introduced tidal marsh. Environ Int 134:105251

    Article  CAS  PubMed  Google Scholar 

  19. Suding KN, Stanley Harpole W, Fukami T, Kulmatiski A, MacDougall AS, Stein C, van der Putten WH (2013) Consequences of plant–soil feedbacks in invasion. J Ecol 101:298–308

    Article  Google Scholar 

  20. Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Article  Google Scholar 

  21. Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GF, Van der Heijden MGA, Kardol P (2018) Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142

    Article  PubMed  Google Scholar 

  22. Bezabih B, Li J, Yuan J, Yanhong D, Liu D, Chen Z, Kim J, Kang H, Freeman C, Ding W (2022) Non-native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions. Global Change Biol. https://doi.org/10.1111/gcb.16290

    Article  Google Scholar 

  23. Aldossari N, Ishii S (2021) Fungal denitrification revisited–recent advancements and future opportunities. Soil Biol Biochem 157:108250

    Article  CAS  Google Scholar 

  24. Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, Xu Z, Zengler K (2017) Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat Commun 8:1–11

    Article  Google Scholar 

  25. Kearns PJ, Bulseco-McKim AN, Hoyt H, Angell JH, Bowen JL (2019) Nutrient enrichment alters salt marsh fungal communities and promotes putative fungal denitrifiers. Microb Ecol 77:358–369

    Article  CAS  PubMed  Google Scholar 

  26. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  PubMed  Google Scholar 

  27. Fahey C, Koyama A, Antunes PM, Dunfield K, Flory SL (2020) Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME J 14:1396–1409

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin Y, Yuan J, Liu D, Kang H, Freeman C, Hu HW, Ye G, Ding W (2021) Divergent responses of wetland methane emissions to elevated atmospheric CO2 dependent on water table. Water Res 205:117682

    Article  CAS  PubMed  Google Scholar 

  29. Li H, La S, Zhang X, Gao L, Tian Y (2021) Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME J 15:2865–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang X, Wang J, Dumack K, Liu W, Zhang Q, He Y, Di H, Bonkowski M, Xu J, Li Y (2021) Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale. Soil Biol Biochem 160:108358

    Article  CAS  Google Scholar 

  31. Yang W, Zhang D, Cai X, Xia L, Luo Y, Cheng X, An S (2019) Significant alterations in soil fungal communities along a chronosequence of Spartina alterniflora invasion in a Chinese Yellow Sea coastal wetland. Sci Total Environ 693:133548

    Article  CAS  PubMed  Google Scholar 

  32. Zhang G, Bai J, Tebbe CC, Huang L, Jia J, Wang W, Wang X, Yu L, Zhao Q (2021) Spartina alterniflora invasions reduce soil fungal diversity and simplify co-occurrence networks in a salt marsh ecosystem. Sci Total Environ 758:143667

    Article  CAS  PubMed  Google Scholar 

  33. Wang W, Wang C, Sardans J, Tong C, Jia R, Zeng C, Peñuelas J (2015) Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. CATENA 128:144–154

    Article  CAS  Google Scholar 

  34. Lin Y, Hu HW, Yang P, Ye G (2022) Spartina alterniflora invasion has a greater impact than non-native species, Phragmites australis and Kandelia obovata, on the bacterial community assemblages in an estuarine wetland. Sci Total Environ 822:153517

    Article  CAS  PubMed  Google Scholar 

  35. Lin Y, Ye G, Liu D, Ledgard S, Luo J, Fan J, Yuan J, Chen Z, Ding W (2018) Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol. Soil Biol Biochem 123:218–228

    Article  CAS  Google Scholar 

  36. Lin Y, Ye G, Kuzyakov Y, Liu D, Fan J, Ding W (2019) Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol Biochem 134:187–196

    Article  CAS  Google Scholar 

  37. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  40. Hannula SE, Ma HK, Perez-Jaramillo JE, Pineda A, Bezemer TM (2020) Structure and ecological function of the soil microbiome affecting plant-soil feedbacks in the presence of a soil-borne pathogen. Environ Microbiol 22:660–676

    Article  CAS  PubMed  Google Scholar 

  41. Ye G, Banerjee S, He JZ, Fan J, Wang Z, Wei X, Hu HW, Zheng Y, Duan C, Wan S, Chen J, Lin Y (2021) Manure application increases microbiome complexity in soil aggregate fractions: results of an 18-year field experiment. Agric Ecosyst Environ 307:107249

    Article  CAS  Google Scholar 

  42. Ye G, Fan J, Hu HW, Chen J, Zhong X, Chen J, Wang D, Wei X, Lin Y (2022) Short-term cellulose addition decreases microbial diversity and network complexity in an Ultisol following 32-year fertilization. Agri Ecosyst Environ 325:107744

    Article  CAS  Google Scholar 

  43. Gaggini L, Rusterholz HP, Baur B (2018) The invasive plant Impatiens glandulifera affects soil fungal diversity and the bacterial community in forests. Appl Soil Ecol 124:335–343

    Article  Google Scholar 

  44. Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985

    Article  PubMed  Google Scholar 

  45. Yang W, Yan Y, Jiang F, Leng X, Cheng X, An S (2016) Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408:443–456

    Article  CAS  Google Scholar 

  46. Cagle G, Lin Q, Graham SA, Mendelssohn I, Fleeger JW, Deis D, Johnson DS, Zhou J, Hou A (2020) Planting Spartina alterniflora in a salt marsh denuded of vegetation by an oil spill induces a rapid response in the soil microbial community. Ecol Eng 151:105815

    Article  Google Scholar 

  47. Lin G, He Y, Lu J, Chen H, Feng J (2021) Seasonal variations in soil physicochemical properties and microbial community structure influenced by Spartina alterniflora invasion and Kandelia obovata restoration. Sci Total Environ 797:149213

    Article  CAS  PubMed  Google Scholar 

  48. Kim J, Rochefort L, Hogue-Hugron S, Alqulaiti Z, Dunn C, Pouliot R, Jones TG, Freeman C, Kang H (2021) Water table fluctuation in peatlands facilitates fungal proliferation, impedes Sphagnum growth and accelerates decomposition. Front Earth Sci 8:579329

    Article  Google Scholar 

  49. Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store. Nature 409:149–149

    Article  CAS  PubMed  Google Scholar 

  50. Collins CG, Carey CJ, Aronson EL, Kopp CW, Diez JM (2016) Direct and indirect effects of native range expansion on soil microbial community structure and function. J Ecol 104:1271–1283

    Article  Google Scholar 

  51. Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314

    Article  Google Scholar 

  52. Gonzalez Mateu M, Baldwin AH, Maul JE, Yarwood SA (2020) Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME J 14:1943–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheung MK, Wong CK, Chu KH, Kwan HS (2018) Community structure, dynamics and interactions of bacteria, archaea and fungi in subtropical coastal wetland sediments. Sci Rep 8:1–14

    Article  Google Scholar 

  54. Wang L, Li Y, Zhao Z, Cordier T, Worms IA, Niu L, Fan C, Slaveykova VI (2021) Microbial community diversity and composition in river sediments contaminated with tetrabromobisphenol A and copper. Chemosphere 272:129855

    Article  CAS  PubMed  Google Scholar 

  55. Mohapatra M, Yadav R, Rajput V, Dharne MS, Rastogi G (2021) Metagenomic analysis reveals genetic insights on biogeochemical cycling, xenobiotic degradation, and stress resistance in mudflat microbiome. J Environ Manage 292:112738

    Article  CAS  PubMed  Google Scholar 

  56. Zuo Y, Li X, Yang J, Liu J, Zhao L, He X (2021) Fungal endophytic community and diversity associated with desert shrubs driven by plant identity and organ differentiation in extremely arid desert ecosystem. J Fungi 7:578

    Article  CAS  Google Scholar 

  57. Yuguda TK, Wu Y, Leng Z, Gao G, Li G, Dai Z, Li J, Du D (2022) Impact of Spartina alterniflora invasion on evapotranspiration water loss in Phragmites australis dominated coastal wetlands of east China. Ecol Eng 179:106605

    Article  Google Scholar 

  58. Xu T, Chen X, Hou Y, Zhu B (2020) Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan plateau. Plant Soil 459:137–153

    Article  Google Scholar 

  59. Schmidt R, Mitchell J, Scow K (2019) Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol Biochem 129:99–109

    Article  CAS  Google Scholar 

  60. Hiiesalu I, Bahram M, Tedersoo L (2017) Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol Ecol 26:4846–4858

    Article  PubMed  Google Scholar 

  61. Gil-Martínez M, López-García Á, Domínguez MT, Kjøller R, Navarro-Fernández CM, Rosendahl S, Marañón T (2021) Soil fungal diversity and functionality are driven by plant species used in phytoremediation. Soil Biol Biochem 153:108102

    Article  Google Scholar 

  62. Sweeney CJ, de Vries FT, van Dongen BE, Bardgett RD (2021) Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytol 229:1492–1507

    Article  PubMed  Google Scholar 

  63. Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Peay KG (2013) Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol Biochem 57:282–291

    Article  CAS  Google Scholar 

  64. Yang W, Jeelani N, Xia L, Zhu Z, Luo Y, Cheng X, An S (2019) Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshes of eastern China. Plant Soil 442:215–232

    Article  CAS  Google Scholar 

  65. Wang W, Sardans J, Wang C, Zeng C, Tong C, Chen G, Huang J, Pan H, Peguero G, Vallicrosa H, Penuelas J (2019) The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Global Change Biol 25:733–743

    Article  Google Scholar 

  66. Wutkowska M, Vader A, Mundra S, Cooper EJ, Eidesen PB (2019) Dead or alive; or does it really matter? Level of congruency between trophic modes in total and active fungal communities in high arctic soil. Front Microbiol 9:3243

    Article  PubMed  PubMed Central  Google Scholar 

  67. Huang L, Bai J, Wang J, Zhang G, Wang W, Wang X, Zhang L, Wang Y, Liu X, Cui B (2022) Different stochastic processes regulate bacterial and fungal community assembly in estuarine wetland soils. Soil Biol Biochem 167:108586

    Article  CAS  Google Scholar 

  68. Zhuang W, Yu X, Hu R, Luo Z, Liu X, Zheng X, Xiao F, Peng Y, He Q, Tian Y, Yang T, Wang S, Shu L, Yan Q, Wang C, He Z (2020) Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. npj Biofilms Microbi 6:52

    Article  CAS  Google Scholar 

  69. Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of Polaromonas phylotypes-evidence for a highly successful dispersal capacity. PLoS ONE 6:e23742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu L, Zhu K, Krause SMB, Li S, Wang X, Zhang Z, Shen M, Yang Q, Lian J, Wang X, Ye W, Zhang J (2021) Changes in assembly processes of soil microbial communities during secondary succession in two subtropical forests. Soil Biol Biochem 154:108144

    Article  CAS  Google Scholar 

  71. Zhou X, Khashi URM, Liu J, Wu F (2021) Soil acidification mediates changes in soil bacterial community assembly processes in response to agricultural intensification. Environ Microbiol 23:4741–4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol R 77:342–356

    Article  Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers are gratefully acknowledged for their valuable comments and suggestions.

Funding

This study received funding from the following sources: National Natural Science Foundation of China (42077041) and Fujian Province (2021J011038).

Author information

Authors and Affiliations

Authors

Contributions

G. Ye and Y. Lin conceived and designed the study; J. Chen, P. Yang, D. Wang, D. Cao, W. Zhang, and X. Wei performed the experiments and analyzed the samples; Z. He and Y. Lin conducted the bioinformatic and biostatistical analyses; G. Y, B. Wu, Y. Wu, X. Wei, and Y. Lin drafted the manuscript. G. Ye, H. Hu, and Y. Lin revised the manuscript. All authors contributed to the final version.

Corresponding authors

Correspondence to Xiangying Wei or Yongxin Lin.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All listed authors have agreed to be listed and have approved the submitted version of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, G., Chen, J., Yang, P. et al. Non-native Plant Species Invasion Increases the Importance of Deterministic Processes in Fungal Community Assembly in a Coastal Wetland. Microb Ecol 86, 1120–1131 (2023). https://doi.org/10.1007/s00248-022-02144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02144-z

Keywords

Navigation