Skip to main content
Log in

First Study Case of Microbial Biocontrol Agents Isolated from Aquaponics Through the Mining of High-Throughput Sequencing Data to Control Pythium aphanidermatum on Lettuce

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Aquaponics is defined as a sustainable and integrated system that combines fish aquaculture and hydroponic plant production in the same recirculated water loop. A recent study using high-throughput sequencing (HTS) technologies highlighted that microbial communities from an aquaponic system could control one of the most problematic pathogens in soilless lettuce culture, namely, Pythium aphanidermatum. Therefore, this study aims at isolating the microorganisms responsible for this biocontrol action. Based on the most promising genera identified by HTS, an innovative strategy for isolating and testing original biocontrol agents from aquaponic water was designed to control P. aphanidermatum. Eighty-two bacterial strains and 18 fungal strains were isolated, identified by Sanger sequencing, and screened in vivo to control damping-off of lettuce seeds caused by P. aphanidermatum. Out of these 100 isolates, the eight most efficacious ones were selected and further tested individually to control root rot disease caused by the same pathogen at a later stage of lettuce growth. Strains SHb30 (Sphingobium xenophagum), G2 (Aspergillus flavus), and Chito13 (Mycolicibacterium fortuitum) decreased seed damping-off at a better rate than a propamocarb fungicide and a Pseudomonas chlororaphis registered biocontrol agent did. In root rot bioassays, lettuce mortality was prevented by applying strains G2 and Chito13, which were at least as efficacious as the fungicide or biopesticide controls. Lettuce disease symptoms and mortality were eradicated by strain SHb30 in the first bioassay, but not in the second one. These results show that aquaponic systems are promising sources of original biocontrol agents, and that HTS-guided strategies could represent interesting approaches to identify new biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vallance J, Déniel F, Le Floch G et al (2010) Pathogenic and beneficial microorganisms in soilless cultures. Agron Sustain Dev 31:191–203. https://doi.org/10.1051/agro/2010018

    Article  Google Scholar 

  2. Sutton JC, Sopher CR, Owen-Going TN et al (2006) Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathol 32:307–321. https://doi.org/10.1590/S0100-54052006000400001

    Article  Google Scholar 

  3. Stanghellini ME, Rasmussen SL (1994) Hydroponics: a solution for zoosporic pathogens. Plant Dis 78:1129–1138. https://doi.org/10.1094/PD-78-1129

    Article  Google Scholar 

  4. Alhussaen K (2006) Pythium and Phytophthora associated with root disease of hydroponic lettuce. PhD thesis, University of Technologie Sydney. https://opus.lib.uts.edu.au/handle/10453/36864

  5. Rakocy JE, Maseer PM, M. Losordo T (2006) Recirculating aquaculture tank production systems – integrated fish and plant culture. South Reg Aquac Cent. https://www.semanticscholar.org/paper/Recirculating-Aquaculture-Tank-Production-Systems-%3A-Rakocy-Masser/7db4a54e7ffab14830af2551e84d87959bd230d4#citing-papers

  6. Bittsanszky A, Gyulai G, Junge R, et al (2015) Plant protection in ecocycle-based agricultural systems: aquaponics as an example. In: International Plant Protection Congress (IPPC). Berlin, Germany, pp 2–3. https://www.researchgate.net/publication/281714199_Plant_protection_in_ecocyclebased_agricultural_systems_aquaponics_as_an_example

  7. Nemethy S, Bittsanszky A, Schmautz Z et al (2016) Protecting plants from pests and diseases in aquaponic systems. Ecological Footprint in Central Europe. The University College of Tourism and Ecology Press, Sucha Beskidzka, Poland, pp 1–8

    Google Scholar 

  8. Folorunso EA, Roy K, Gebauer R, et al (2020) Integrated pest and disease management in aquaponics: a metadata-based review. Rev Aquac 13:971–995. https://doi.org/10.1111/raq.12508

  9. Stouvenakers G, Dapprich P, Massart S, Jijakli MH (2019) Ch 14: Plant pathogens and control strategies in aquaponics. In: Joyce A, Kotzen B, Burnell GM (eds) Simon Goddek. Aquaponics food production systems. Springer, Cham, pp 353–378

    Google Scholar 

  10. Paulitz TC (1997) Biological control of root pathogens in soilless and hydroponic systems. HortScience 32:193–196

    Article  Google Scholar 

  11. Postma J, van Os E, Bonants PJM (2008) Ch 10 – Pathogen detection and management strategies in soilless plant growing system. In: Soilless culture: theory and practice, third edition. Elsevier B.V., pp 425–457. https://www.sciencedirect.com/science/article/pii/B9780444529756500125?via%3Dihub

  12. Montagne V, Capiaux H, Barret M et al (2017) Bacterial and fungal communities vary with the type of organic substrate: implications for biocontrol of soilless crops. Environ Chem Lett 15:537–545. https://doi.org/10.1007/s10311-017-0628-0

    Article  CAS  Google Scholar 

  13. Deacon JW, Entwistle AR, Deacon JW et al (1988) Biocontrol of soil-borne plant pathogens with introduced inocula [and discussion]. Philos Trans R Soc Lond B Biol Sci 318:249–264

    Article  Google Scholar 

  14. Stouvenakers G, Massart S, Depireux P, Jijakli MH (2020) Microbial origin of aquaponic water suppressiveness against Pythium aphanidermatum lettuce root rot disease. Microorganisms 8:1–25. https://doi.org/10.3390/microorganisms8111683

    Article  CAS  Google Scholar 

  15. Schlatter D, Kinkel L, Thomashow L et al (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297. https://doi.org/10.1094/PHYTO-03-17-0111-RVW

    Article  PubMed  Google Scholar 

  16. Expósito RG, de Bruijn I, Postma J, Raaijmakers JM (2017) Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.02529

    Article  Google Scholar 

  17. Niem JM, Billones-Baaijens R, Stodart B, Savocchia S (2020) Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases. Front Microbiol 11:1–19. https://doi.org/10.3389/fmicb.2020.00477

    Article  Google Scholar 

  18. Liao H, Huang L, Li N et al (2021) Auxiliary rapid identification of pathogenic and antagonistic microorganisms associated with Coptis chinensis root rot by high-throughput sequencing. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-021-90489-9

    Article  CAS  Google Scholar 

  19. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  20. Raymaekers K, Ponet L, Holtappels D et al (2020) Screening for novel biocontrol agents applicable in plant disease management – a review. Biol Control 144:104240. https://doi.org/10.1016/j.biocontrol.2020.104240

    Article  CAS  Google Scholar 

  21. Eck M, Szekely I, Massart S, Jijakli MH (2021) Ecological study of aquaponics bacterial microbiota over the course of a lettuce growth cycle. Water 13:21

    Article  Google Scholar 

  22. Khan A, Sutton JC, Grodzinski B (2003) Effects of Pseudomonas chlororaphis on Pythium aphanidermatum and root rot in peppers grown in small-scale hydroponic troughs. Biocontrol Sci Technol 13:615–630. https://doi.org/10.1080/0958315031000151783

    Article  Google Scholar 

  23. Chatterton S, Sutton JC, Boland GJ (2004) Timing Pseudomonas chlororaphis applications to control Pythium aphanidermatum, Pythium dissotocum, and root rot in hydroponic peppers. Biol Control 30:360–373. https://doi.org/10.1016/j.biocontrol.2003.11.001

    Article  Google Scholar 

  24. Liu W, Sutton JC, Grodzinski B et al (2007) Biological control of Pythium root rot of chrysanthemum in small-scale hydroponic units. Phytoparasitica 35:159–178. https://doi.org/10.1007/BF02981111

    Article  Google Scholar 

  25. Eck M, Sare AR, Massart S et al (2019) Exploring bacterial communities in aquaponic systems. Water 11:1–16. https://doi.org/10.3390/w11020260

    Article  CAS  Google Scholar 

  26. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877. https://doi.org/10.1101/gr.9.9.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jansson H-B, Thiman L (1992) A preliminary study of chemotaxis of zoospores of the nematode-parasitic fungus Catenaria anguillulae. Mycologia 84:109. https://doi.org/10.2307/3760409

    Article  Google Scholar 

  28. Reddy PP (2014) Plant growth promoting rhizobacteria for horticultural crop protection, 1st editio. Springer India. https://link.springer.com/content/pdf/10.1007/978-81-322-1973-6.pdf

  29. Sirakov I, Lutz M, Graber A et al (2016) Potential for combined biocontrol activity against fungal fish and plant pathogens by bacterial isolates from a model aquaponic system. Water 8:1–7. https://doi.org/10.3390/w8110518

    Article  Google Scholar 

  30. Wu Q, Dou X, Wang Q et al (2018) Isolation of β-1,3-glucanase-producing microorganisms from Poria cocos cultivation soil via molecular biology. Molecules 23:1555. https://doi.org/10.3390/molecules23071555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834. https://doi.org/10.1128/AEM.71.2.826-834.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520. https://doi.org/10.1016/j.soilbio.2005.12.017

    Article  CAS  Google Scholar 

  33. Williams ST, Wellington EMH (1982) Principles and problems of selective isolation of microbes. In: Bu’lock JD (ed) Bioactive metabolic products: search and discovery. Academic Press, London, pp 9–26. https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=81068969&searchType=1&permalink=y

  34. El-Tarabily KA (2006) Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222. https://doi.org/10.1139/B05-153

    Article  CAS  Google Scholar 

  35. Evangelista-Martínez Z (2014) Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol 30:1639–1647. https://doi.org/10.1007/s11274-013-1568-x

    Article  CAS  PubMed  Google Scholar 

  36. Nadeem SM, Naveed M, Ayyub M, Khan MY (2016) Potential, limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: a review. Soil Environ 35:106–145

    CAS  Google Scholar 

  37. Thongkamngam T, Jaenaksorn T (2017) Fusarium oxysporum (F221-B) as biocontrol agent against plant pathogenic fungi in vitro and in hydroponics. Plant Prot Sci 53:85–95. https://doi.org/10.17221/59/2016-PPS

    Article  CAS  Google Scholar 

  38. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511. https://doi.org/10.1093/jexbot/52.suppl_1.487

    Article  CAS  PubMed  Google Scholar 

  39. Boers SA, Jansen R, Hays JP (2019) Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis 38:1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stefani FOP, Bell TH, Marchand C et al (2015) Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0128272

    Article  CAS  Google Scholar 

  41. Forbes JD, Knox NC, Ronholm J et al (2017) Metagenomics: the next culture-independent game changer. Front Microbiol 8:1–21. https://doi.org/10.3389/fmicb.2017.01069

    Article  Google Scholar 

  42. Garbeva P, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

    Article  CAS  PubMed  Google Scholar 

  43. Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities – a review. J Ind Microbiol Biotechnol 17:170–178. https://doi.org/10.1007/bf01574690

    Article  CAS  Google Scholar 

  44. Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:1–19. https://doi.org/10.3389/fpls.2019.00845

    Article  Google Scholar 

  45. Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. CRC Crit Rev Plant Sci 18:111–181

    Article  CAS  Google Scholar 

  46. Adams PB (1971) Pythium aphanidermatum oospore germination as affected by time, temperature, and pH. Phytopathology 61:1149–1150

    Article  Google Scholar 

  47. Song D, Chen X, Xu M et al (2019) Adaptive evolution of Sphingobium hydrophobicum C1T in electronic waste contaminated river sediment. Front Microbiol 10:1–16. https://doi.org/10.3389/fmicb.2019.02263

    Article  Google Scholar 

  48. Stolz A, Schmidt-Maag C, Denner EBM et al (2000) Description of Sphingomonas xenophaga sp. nov. for strains BN6(T) and N, N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41. https://doi.org/10.1099/00207713-50-1-35

    Article  CAS  PubMed  Google Scholar 

  49. Cardinale M, Grube M, Erlacher A et al (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 17:239–252. https://doi.org/10.1111/1462-2920.12686

    Article  CAS  PubMed  Google Scholar 

  50. Schmautz Z, Graber A, Jaenicke S, et al (2017) Microbial diversity in different compartments of an aquaponics system. Arch Microbiol 199:613–620. https://doi.org/10.1007/s00203-016-1334-1

  51. Sare AR, Stouvenakers G, Eck M et al (2020) Standardization of plant microbiome studies: which proportion of the microbiota is really harvested? Microorganisms 8:17. https://doi.org/10.3390/microorganisms8030342

    Article  CAS  Google Scholar 

  52. Ortega RA, Mahnert A, Berg C et al (2016) The plant is crucial: specific composition and function of the phyllosphere microbiome of indoor ornamentals. FEMS Microbiol Ecol 92:12. https://doi.org/10.1093/femsec/fiw173

    Article  CAS  Google Scholar 

  53. Wanees AE, Zaslow SJ, Potter SJ et al (2018) Draft genome sequence of the plant growth-promoting Sphingobium sp strain aew4, isolated from the rhizosphere of the beachgrass Ammophila breviligulata. Genome Announc 6:2. https://doi.org/10.1128/genomeA.00410-18

    Article  Google Scholar 

  54. Miller CD, Hall K, Liang YN et al (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading mycobacterium isolates from soil. Microb Ecol 48:230–238. https://doi.org/10.1007/s00248-003-1044-5

    Article  CAS  PubMed  Google Scholar 

  55. Bisht S, Pandey P, Bhargava B et al (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian J Microbiol 46:7–21. https://doi.org/10.1590/S1517-838246120131354

    Article  CAS  Google Scholar 

  56. Kyselková M, Kopeck J, Frapolli M et al (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138. https://doi.org/10.1038/ismej.2009.61

    Article  PubMed  Google Scholar 

  57. Burgos-Garay ML, Hong C, Moorman GW (2014) Interactions of heterotrophic bacteria from recycled greenhouse irrigation water with plant pathogenic Pythium. HortScience 49:961–967. https://doi.org/10.21273/hortsci.49.7.961

    Article  Google Scholar 

  58. Sanchez FA, Vivian-Rogers VR, Urakawa R (2019) Tilapia recirculating aquaculture systems as a source of plant growth promoting bacteria. Aquac Res 50:2054–2065. https://doi.org/10.1111/are.14072

  59. Fattah AM, Sayed E (2006) Tilapia culture, CABI Publi. https://www.aquacultureinafrica.com/?p=1623

  60. Faria S, Joao I, Jordao L (2015) General overview on nontuberculous Mycobacteria, biofilms, and human Infection. J Pathog 2015:1–10. https://doi.org/10.1155/2015/809014

    Article  Google Scholar 

  61. Alabouvette C, Cordier C (2011) Risks of microbial biocontrol agents and regulation: are they in balance? In: Ehlers R-U (ed) Regulation of Biological Control Agents. Springer, Dordrecht, pp 1–416

    Google Scholar 

  62. Von Graevenitz A, Weinstein J (1971) Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J Biol Med 44:265–273

    Google Scholar 

  63. Amaike S, Keller NP (2011) Aspergillus flavus. Annu Rev Phytopathol 49:107–133. https://doi.org/10.1146/annurev-phyto-072910-095221

    Article  CAS  PubMed  Google Scholar 

  64. Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP (2021) Biocontrol of aflatoxins using non-aflatoxigenic Aspergillus flavus: A literature review. J Fungi 7:13. https://doi.org/10.3390/jof7050381

    Article  CAS  Google Scholar 

  65. Shanmugan V, Sakurana Varma A (1999) Effect of native antagonists against Pythium aphanidermatum, the causal organism of rhizome rot in ginger. J Mycol plant Pathol 29:375–379

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the laboratory staff and their supervisors for their valuable assistance and reviewing. We especially thank the trainee Fanny Vautrin who helped screen the biocontrol agents.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by GS. The first draft of the manuscript was written by GS, and all authors commented on the previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to G. Stouvenakers.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stouvenakers, G., Massart, S. & Jijakli, M.H. First Study Case of Microbial Biocontrol Agents Isolated from Aquaponics Through the Mining of High-Throughput Sequencing Data to Control Pythium aphanidermatum on Lettuce. Microb Ecol 86, 1107–1119 (2023). https://doi.org/10.1007/s00248-022-02126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02126-1

Keywords

Navigation