Skip to main content

Advertisement

Log in

Elevated O3 Exerts Stronger Effects than Elevated CO2 on the Functional Guilds of Fungi, but Collectively Increase the Structural Complexity of Fungi in a Paddy Soil

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Global climate change is characterized by altered global atmospheric composition, including elevated CO2 and O3, with important consequences on soil fungal communities. However, the function and community composition of soil fungi in response to elevated CO2 together with elevated O3 in paddy soils remain largely unknown. Here we used twelve open-top chamber facilities (OTCs) to evaluate the interactive effect of CO2 (+ 200 ppm) and O3 (+ 40 ppb) on the diversity, gene abundance, community structure, and functional composition of soil fungi during the growing seasons of two rice cultivars (Japonica, Wuyujing 3 vs. Nangeng 5055) in a Chinese paddy soil. Elevated CO2 and O3 showed no individual or combined effect on the gene abundance or relative abundance of soil fungi, but increased structural complexity of soil fungal communities, indicating that elevated CO2 and/or O3 promoted the competition of species-species interactions. When averaged both cultivars, elevated CO2 showed no individual effect on the diversity or abundance of functional guilds of soil fungi. By contrast, elevated O3 significantly reduced the relative abundance and diversity of symbiotrophic fungi by an average of 47.2% and 39.1%, respectively. Notably, elevated O3 exerts stronger effects on the functional processes of fungal communities than elevated CO2. The structural equation model revealed that elevated CO2 and/or O3 indirectly affected the functional composition of soil fungi through community structure and diversity of soil fungi. Root C/N and soil environmental parameters were identified as the top direct predictors for the community structure of soil fungi. Furthermore, significant correlations were identified between saprotrophic fungi and root biomass, symbiotrophic fungi and root carbon, the pathotroph-symbiotroph and soil pH, as well as pathotroph-saprotroph-symbiotroph and soil microbial biomass carbon. These results suggest that climatic factors substantially affected the functional processes of soil fungal, and threatened soil function and food production, highlighting the detrimental impacts of high O3 on the function composition of soil biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The microbial raw data were submitted to the NCBI Sequence Read Archive and are available through BioProject record ID PRJNA881240.

References

  1. Macek I, Clark DR, Sibanc N, Moser G, Vodnik D, Muller C, Dumbrell AJ (2019) Impacts of long-term elevated atmospheric CO2 concentrations on communities of arbuscular mycorrhizal fungi. Mol Ecol 28:3445–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  3. Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220:1059–1075

    Article  PubMed  Google Scholar 

  4. Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  5. Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3:1–8

    Article  Google Scholar 

  6. Schmidt R, Mitchell J, Scow K (2019) Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol Biochem 129:99–109

    Article  CAS  Google Scholar 

  7. Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ, Bardgett R (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921–929

    Article  CAS  Google Scholar 

  8. IPCC (2021) Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.

  9. Xia L, Lam SK, Kiese R, Chen D, Luo Y, van Groenigen KJ, Ainsworth EA, Chen J, Liu S, Ma L, Zhu Y, Butterbach-Bahl K (2021) Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4:1752–1763

    Article  Google Scholar 

  10. WMO (2019) Greenhouse Gas Bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2018 (World Meteorological Organization).

  11. Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V (2020) Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Sci Adv 6:eabc1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897

    Article  CAS  PubMed  Google Scholar 

  13. Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biol 14:1642–1650

    Article  Google Scholar 

  14. Qiu Y, Guo L, Xu X, Zhang L, Zhang K, Chen M, Zhao Y, Burkey KO, Shew HD, Zobel RW (2021) Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci Adv 7:eabe9256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Tang H, Zhu J, Lin X, Feng Y (2019) Effects of elevated ground-level ozone on paddy soil bacterial community and assembly mechanisms across four years. Sci Total Environ 654:505–513

    Article  CAS  PubMed  Google Scholar 

  16. Chung H, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO(2) and O(3). Oecologia 147:143–154

    Article  PubMed  Google Scholar 

  17. Changey F, Bagard M, Souleymane M, Lerch TZ (2018) Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environ Pollut 242:113–125

    Article  CAS  PubMed  Google Scholar 

  18. Ebanyenle E, Burton AJ, Storer AJ, Richter DL, Glaeser JA (2016) Elevated tropospheric CO2 and O3 may not alter initial wood decomposition rate or wood-decaying fungal community composition of Northern Hardwoods. Int Biodeter Biodegr 111:74–77

    Article  CAS  Google Scholar 

  19. Edwards IP, Zak DR (2011) Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Global Change Biol 17:2184–2195

    Article  Google Scholar 

  20. Feng Y, Yu Y, Tang H, Zu Q, Zhu J, Lin X (2015) The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone. Environ Pollut 197:195–202

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Liu X, Zhang X, Smith P, Li L, Filley TR, Cheng K, Shen M, He Y, Pan G (2016) Size and variability of crop productivity both impacted by CO2 enrichment and warming—a case study of 4 year field experiment in a Chinese paddy. Agr Ecosyst Environ 221:40–49

    Article  Google Scholar 

  22. Li Y, Ma J, Yu Y, Li Y, Shen X, Huo S, Xia X (2022) Effects of multiple global change factors on soil microbial richness, diversity and functional gene abundances: a meta-analysis. Sci Total Environ 815:152737

    Article  CAS  PubMed  Google Scholar 

  23. Andrew C, Lilleskov EA (2009) Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3. Ecol Lett 12:813–822

    Article  PubMed  Google Scholar 

  24. Morecroft MD, Duffield S, Harley M, Pearce-Higgins JW, Stevens N, Watts O, Whitaker J (2019) Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366:eaaw9256

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Tan Y, Shao Y, Shi X, Zhang G (2022) Changes in the abundance and community complexity of soil nematodes in two rice cultivars under elevated ozone. Front Microbiol 13.

  26. Shang B, Fu R, Agathokleous E, Dai L, Zhang G, Wu R, Feng Z (2022) Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. Sci Total Environ 806:151341

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Joergensen R, Pommerening B, Chaussod R, Brookes P (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  28. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  29. Wang J, Shi X, Zheng C, Suter H, Huang Z (2021) Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Sci Total Environ 755:142449

    Article  CAS  PubMed  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tanunchai B, Ji L, Schroeter SA, Wahdan SFM, Hossen S, Delelegn Y, Buscot F, Lehnert AS, Alves EG, Hilke I, Gleixner G, Schulze ED, Noll M, Purahong W (2022) FungalTraits vs. FUNGuild: comparison of ecological functional assignments of leaf- and needle-associated fungi across 12 temperate tree species. Microb Ecol. https://doi.org/10.1007/s00248-022-01973-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  34. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media 3:361–362

    Article  Google Scholar 

  35. Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574

    Article  Google Scholar 

  36. Wang J, Zheng Y, Shi X, Lam SK, Lucas-Borja ME, Huang Z (2022) Nature restoration shifts the abundance and structure of soil nematode communities in subtropical forests. Plant Soil 471(1):315–327

    Article  CAS  Google Scholar 

  37. Kasurinen A, Keinanen MM, Kaipainen S, Nilsson L-O, Vapaavuori E, Kontro MH, Holopainen T (2005) Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biol 11:1167–1179

    Article  Google Scholar 

  38. Zhou Y, Sun B, Xie B, Feng K, Zhang Z, Zhang Z, Li S, Du X, Zhang Q, Gu S, Song W, Wang L, Xia J, Han G, Deng Y (2021) Warming reshaped the microbial hierarchical interactions. Global Chang Biol 27(24):6331–6347

    Article  CAS  Google Scholar 

  39. Agathokleous E, Belz RG, Calatayud V, De Marco A, Hoshika Y, Kitao M, Saitanis CJ, Sicard P, Paoletti E, Calabrese EJ (2019) Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. Sci Total Environ 649:61–74

    Article  CAS  PubMed  Google Scholar 

  40. Cheng L, Booker FL, Burkey KO, Tu C, Shew HD, Rufty TW, Fiscus EL, Deforest JL, Hu S (2011) Soil microbial responses to elevated CO(2) and O(3) in a nitrogen-aggrading agroecosystem. PLoS One 6:e21377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Butterly CR, Phillips LA, Wiltshire JL, Franks AE, Armstrong RD, Chen D, Mele PM, Tang C (2016) Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. Soil Biol Biochem 97:157–167

    Article  CAS  Google Scholar 

  42. Wang Q, Li Z, Li X, Ping Q, Yuan X, Agathokleous E, Feng Z (2021) Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings. Sci Total Environ 754:142134

    Article  CAS  PubMed  Google Scholar 

  43. Halo BA, Al-Yahyai RA, Al-Sadi AM (2020) An endophytic Talaromyces omanensis enhances reproductive, physiological and anatomical characteristics of drought-stressed tomato. J Plant Physiol 249:153163

    Article  CAS  PubMed  Google Scholar 

  44. Rosa LH, Ogaki MB, Lirio JM, Vieira R, Coria SH, Pinto OHB, Carvalho-Silva M, Convey P, Rosa CA, Câmara PEAS (2022) Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 26:1–10

    Article  Google Scholar 

  45. Newman ME (2006) Modularity and community structure in networks. P Nat Acad Sci USA 103:8577–8582

    Article  CAS  Google Scholar 

  46. Connell JH (1978) Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  47. Moore MN (2010) Is toxicological pathology characterised by a loss of system complexity? Mar Environ Res 69(Suppl):S37-41. https://doi.org/10.1016/j.marenvres.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  48. Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinformatics 13:1–20

    Article  Google Scholar 

  49. Wang J, Li M, Zhang X, Liu X, Li L, Shi X, Hu H-w, Pan G (2019) Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field. Plant Soil 445:425–437

    Article  CAS  Google Scholar 

  50. Giovannoni SJ, Cameron Thrash J, Temperton B (2014) Implications of streamlining theory for microbial ecology. ISME J 8:1553–1565

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hou Q, Lin S, Ni Y, Yao L, Huang S, Zuo T, Wang J, Ni W (2022) Assembly of functional microbial communities in paddy soil with long-term application of pig manure under rice-rape cropping system. J Environ Manage 305:114374

    Article  CAS  PubMed  Google Scholar 

  52. Lei X, Zhao L, Brookes PC, Wang F, Chen C, Yang W, Xing S (2018) Fungal communities and functions response to long-term fertilization in paddy soils. Appl Soil Ecol 130:251–258

    Article  Google Scholar 

  53. Wang X, Qu L, Mao Q, Watanabe M, Hoshika Y, Koyama A, Kawaguchi K, Tamai Y, Koike T (2015) Ectomycorrhizal colonization and growth of the hybrid larch F(1) under elevated CO(2) and O(3). Environ Pollut 197:116–126

    Article  CAS  PubMed  Google Scholar 

  54. Olszyk D, Johnson M, Phillips D, Seidler R, Tingey D, Watrud L (2001) Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm. Environ Pollut 115:447–462

    Article  CAS  PubMed  Google Scholar 

  55. Tu C, Booker FL, Burkey KO, Hu S (2009) Elevated atmospheric carbon dioxide and O3differentially alter nitrogen acquisition in peanut. Crop Sci 49:1827–1836

    Article  CAS  Google Scholar 

  56. Andrew C, Lilleskov EA (2014) Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy. Mycorrhiza 24:581–593

    Article  CAS  PubMed  Google Scholar 

  57. Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P (2019) Climate change microbiology—problems and perspectives. Nat Rev Microbiol 17:391–396

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (Grant Nos. 42077209, 32071631, 31901165, and 41907022) and Natural Science Foundation of Fujian Province, China (Grant Nos. 2020J01186 and 2020J01138).

Author information

Authors and Affiliations

Authors

Contributions

JW and XS analyzed the data and drafted the manuscript. JW, YT, and LW performed the laboratory work. XS revised and improved the draft. GZ contributed ideas to the study and carried out the experimental design and management. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Xiuzhen Shi.

Ethics declarations

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 400 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shi, X., Tan, Y. et al. Elevated O3 Exerts Stronger Effects than Elevated CO2 on the Functional Guilds of Fungi, but Collectively Increase the Structural Complexity of Fungi in a Paddy Soil. Microb Ecol 86, 1096–1106 (2023). https://doi.org/10.1007/s00248-022-02124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02124-3

Keywords

Navigation