Skip to main content
Log in

Strong Linkage Between Symbiotic Bacterial Community and Host Age and Morph in a Hemipteran Social Insect

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The relationships between symbionts and insects are complex, and symbionts usually have diverse ecological and evolutionary effects on their hosts. The phloem sap-sucking aphids are good models to study the interactions between insects and symbiotic microorganisms. Although aphids usually exhibit remarkable life cycle complexity, most previous studies on symbiotic diversity sampled only apterous viviparous adult females or very few morphs. In this study, high-throughput 16S rDNA amplicon sequencing was used to assess the symbiotic bacterial communities of eleven morphs or developmental stages of the social aphid Pseudoregma bambucicola. We found there were significant differences in bacterial composition in response to different morphs and developmental stages, and for the first time, we revealed male aphids hosted very different symbiotic composition featured with low abundance of dominant symbionts but high diversity of total symbionts. The relative abundance of Pectobacterium showed relatively stable across different types of samples, while that of Wolbachia fluctuated greatly, indicating the former may have a consistent function in this species and the latter may provide specific function for certain morphs or developmental stages. Our study presents new evidence of complexity of symbiotic associations and indicates strong linkage between symbiotic bacterial community and host age and morph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw sequencing data are deposited in the NCBI Sequence Read Archive (SRA) database with accession number PRJNA837194.

References

  1. Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC (1991) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324. https://doi.org/10.1128/jb.173.20.6321-6324.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clark MA, Moran NA, Baumann P, Wernegreen JJ (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54:517–525. https://doi.org/10.1111/j.0014-3820.2000.tb00054.x

    Article  CAS  PubMed  Google Scholar 

  3. Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171. https://doi.org/10.1098/rspb.1993.0098

    Article  Google Scholar 

  4. Koga R, Meng X-Y, Tsuchida T, Fukatsu T (2012) Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc Natl Acad Sci 109:E1230–E1237. https://doi.org/10.1073/pnas.1119212109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  6. Douglas AE (1993) The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol 18:31–38. https://doi.org/10.1111/j.1365-2311.1993.tb01076.x

    Article  Google Scholar 

  7. Sandström J, Moran N (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91:203–210. https://doi.org/10.1007/978-94-017-1890-5_26

    Article  Google Scholar 

  8. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266. https://doi.org/10.1146/annurev-ento-112408-085305

    Article  CAS  PubMed  Google Scholar 

  9. Zytynska SE, Weisser WW (2016) The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol 41:13–26. https://doi.org/10.1111/een.12281

    Article  Google Scholar 

  10. Zeng L, Liu Q, Huang X (2019) Diversity and functions of the secondary endosymbionts in aphids. Wuyi Sci J 35:4–11. https://doi.org/10.15914/j.cnki.wykx.2019.01.02

    Article  Google Scholar 

  11. Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28:341–355. https://doi.org/10.1111/1365-2435.12133

    Article  Google Scholar 

  12. Rock DI, Smith AH, Joffe J, Albertus A, Wong N, O’Connor M, Oliver KM, Russell JA (2018) Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol Ecol 27:2039–2056. https://doi.org/10.1111/mec.14449

    Article  PubMed  Google Scholar 

  13. Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758. https://doi.org/10.1128/AEM.66.7.2748-2758.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gómez-Valero L, Soriano-Navarro M, Pérez-Brocal V, Heddi A, Moya A, García-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186:6626–6633. https://doi.org/10.1128/JB.186.19.6626-6633.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Sci 303:1989. https://doi.org/10.1126/science.1094611

    Article  CAS  Google Scholar 

  16. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci 100:1803–1807. https://doi.org/10.1073/pnas.0335320100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol lett 6:109–111. https://doi.org/10.1098/rsbl.2009.0642

    Article  PubMed  Google Scholar 

  18. Łukasik P, van Asch M, Guo H, Ferrari J, Godfray HCJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218. https://doi.org/10.1111/ele.12031

    Article  PubMed  Google Scholar 

  19. Brandt JW, Chevignon G, Oliver KM, Strand MR (2017) Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc R Soc B Biol Sci 284:20171925. https://doi.org/10.1098/rspb.2017.1925

    Article  CAS  Google Scholar 

  20. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195. https://doi.org/10.1046/j.1365-2311.2002.00393.x

    Article  Google Scholar 

  21. Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon J-C, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Sci 330:1102–1104. https://doi.org/10.1126/science.1195463

    Article  CAS  Google Scholar 

  22. Simon J-C, Boutin S, Tsuchida T, Koga R, Le Gallic J-F, Frantz A, Outreman Y, Fukatsu T (2011) Facultative symbiont infections affect aphid reproduction. PLoS ONE 6:e21831. https://doi.org/10.1371/journal.pone.0021831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones RT, Bressan A, Greenwell AM, Fierer N (2011) Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands. Appl Environ Microbiol 77:8345–8349. https://doi.org/10.1128/AEM.05974-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sepúlveda DA, Zepeda-Paulo F, Ramírez CC, Lavandero B, Figueroa CC (2017) Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect Sci 24:511–521. https://doi.org/10.1111/1744-7917.12313

    Article  PubMed  Google Scholar 

  25. Henry LM, Peccoud J, Simon J-C, Hadfield JD, Maiden MJC, Ferrari J, Godfray HCJ (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 23:1713–1717. https://doi.org/10.1016/j.cub.2013.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mandrioli M, Bisanti M, Grasso DA, Manicardi GC (2016) Role of ant-tending in modulating the presence of symbiotic bacteria against parasitoids in aphids. Trends in Entomology 12:63–71

  27. Xu S, Jiang L, Qiao G, Chen J (2020) The bacterial flora associated with the polyphagous aphid Aphis gossypii Glover (Hemiptera: Aphididae) is strongly affected by host plants. Microb Ecol 79:971–984. https://doi.org/10.1007/s00248-019-01435-2

    Article  CAS  PubMed  Google Scholar 

  28. Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ (2015) Insect life history and the evolution of bacterial mutualism. Ecol Lett 18:516–525. https://doi.org/10.1111/ele.12425

    Article  PubMed  Google Scholar 

  29. Qin M, Chen J, Xu S, Jiang L, Qiao G (2021) Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): diversity, host species specificity and phylosymbiosis. Environ Microbiol 23:2184–2198. https://doi.org/10.1111/1462-2920.15391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Douglas AE, Dixon AFG (1987) The mycetocyte symbiosis of aphids: variation with age and morph in virginoparae of Megoura viciae and Acyrthosiphon pisum. J Insect Physiol 33:109–113. https://doi.org/10.1016/0022-1910(87)90082-5

    Article  Google Scholar 

  31. S Aoki U Kurosu (2010) A review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers Psyche 2010https://doi.org/10.1155/2010/380351

  32. Siddiqui JA, Zou X, Liu Q, Zhang H, Lin X, Huang X (2019) Functional morphology and defensive behavior in a social aphid. Insects 10:163. https://doi.org/10.3390/insects10060163

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sakata K, Itô Y (1991) Life history characteristics and behaviour of the bamboo aphid, Pseudoregma bambucicola (Hemiptera: Pemphigidae), having sterile soldiers. Insect Soc 38:317–326. https://doi.org/10.1007/BF01314917

    Article  Google Scholar 

  34. Sunose T, Yamane S, Tsuda K, Takasu K (1991) What do the soldiers of Pseudoregma bambucicola (Homoptera, Aphidoidea) defend? Jpn J Entomol 59:141–148. https://dl.ndl.go.jp/info:ndljp/pid/10654121

  35. Liu Q, Zhang H, Zeng L, Yu Y, Lin X, Huang X (2021) Coexistence of three dominant bacterial symbionts in a social aphid and implications for ecological adaptation. Insects 12:416. https://doi.org/10.3390/insects12050416

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ledbetter RN, Connon SA, Neal AL, Dohnalkova A, Magnuson TS (2007) Biogenic mineral production by a novel arsenic-metabolizing thermophilic bacterium from the Alvord Basin, Oregon. Appl Environ Microbiol 73:5928–5936. https://doi.org/10.1128/AEM.00371-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, Ross FJ, McCoy CO, Bumgarner R, Marrazzo JM et al (2012) Bacterial communities in women with bacterial vaginosis: High resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE 7:e37818. https://doi.org/10.1371/journal.pone.0037818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  42. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. https://doi.org/10.1038/nmeth.2276

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  47. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR et al (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci 109:1691–1696. https://doi.org/10.1073/pnas.1120238109

    Article  PubMed  PubMed Central  Google Scholar 

  48. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. (2015) Package ‘vegan’: community ecology package. R package version 2.3–0. https://github.com/vegandevs/vegan. Accessed 22 July 2022

  49. Wickham H (2016) Package ‘ggplot2’: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  50. Team RC (2014). R: a language and environment for statistical computing. Version 3.1.1. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. Accesed 22 July 2022

  51. Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574. https://doi.org/10.1890/12-2010.1

    Article  Google Scholar 

  52. MJ Anderson (2014) Permutational multivariate analysis of variance (PERMANOVA) Wiley statsref: statistics reference online 1–15. https://doi.org/10.1002/9781118445112.stat07841

  53. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352. https://doi.org/10.1371/journal.pcbi.1000352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

  55. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280. https://doi.org/10.1093/nar/gkh063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3134. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Team RC (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Accessed 18 December 2021

  58. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Package ‘corrplot’. Statistician 56:e24. https://github.com/taiyun/corrplot. Accessed18 December 2021

  59. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135. https://doi.org/10.1046/j.1365-294X.2002.01606.x

    Article  CAS  PubMed  Google Scholar 

  60. Gauthier J-P, Outreman Y, Mieuzet L, Simon J-C (2015) Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS ONE 10:e0120664. https://doi.org/10.1371/journal.pone.0120664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu S, Jiang L, Qiao G, Chen J (2021) Diversity of bacterial symbionts associated with Myzus persicae (Sulzer) (Hemiptera: Aphididae: Aphidinae) revealed by 16S rRNA Illumina sequencing. Microb Ecol 81:784–794. https://doi.org/10.1007/s00248-020-01622-6

    Article  CAS  PubMed  Google Scholar 

  62. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969

    Article  CAS  PubMed  Google Scholar 

  63. Fukatsu T, Ishikawa H (1992) Soldier and male of an eusocial aphid Colophina arma lack endosymbiont: Implications for physiological and evolutionary interaction between host and symbiont. J Insect Physiol 38:1033–1042. https://doi.org/10.1016/0022-1910(92)90012-3

    Article  Google Scholar 

  64. Wegierek P, Michalik A, Wieczorek K, Kanturski M, Kobiałka M, Śliwa K, Szklarzewicz T (2017) Buchnera aphidicola of the birch blister aphid, Hamamelistes betulinus (Horváth, 1896) (Insecta, Hemiptera, Aphididae: Hormaphidinae): molecular characterization, transmission between generations and its geographic significance. Acta Zool 98:412–421. https://doi.org/10.1111/azo.12186

    Article  Google Scholar 

  65. Michalik A, Szklarzewicz T, Jankowska W, Wieczorek K (2014) Endosymbiotic microorganisms of aphids (Hemiptera: Sternorrhyncha: Aphidoidea): ultrastructure, distribution and transovarial transmission. Eur J Entomol 111:91–104. https://doi.org/10.14411/eje.2014.011

    Article  Google Scholar 

Download references

Acknowledgements

We greatly thank Zhentao Cheng for taking and processing the aphid photos for Fig. 1.

Funding

National Natural Science Foundation of China (Grant number: 31970446).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and Q.L. conceived and designed the study. All the authors contributed to the data collection. Q.L. and H.Z. analyzed the data. X.H. contributed resources during the study. All the authors wrote and reviewed and the final manuscript.

Corresponding author

Correspondence to Xiaolei Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1720 KB)

Supplementary file2 (XLSX 27 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, H. & Huang, X. Strong Linkage Between Symbiotic Bacterial Community and Host Age and Morph in a Hemipteran Social Insect. Microb Ecol 86, 1213–1225 (2023). https://doi.org/10.1007/s00248-022-02114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02114-5

Keywords

Navigation