Skip to main content
Log in

Divergence of Biocrust Active Bacterial Communities in the Negev Desert During a Hydration-Desiccation Cycle

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Rain events in arid environments are highly unpredictable and intersperse extended periods of drought. Therefore, tracking changes in desert soil bacterial communities during rain events, in the field, was seldom attempted. Here, we assessed rain-mediated dynamics of active bacterial communities in the Negev Desert biological soil crust (biocrust). Biocrust samples were collected during, and after a medium rainfall and dry soil was used as a control; we evaluated the changes in active bacterial composition, potential function, potential photosynthetic activity, and extracellular polysaccharide (EPS) production. We hypothesized that rain would activate the biocrust phototrophs (mainly Cyanobacteria), while desiccation would inhibit their activity. In contrast, the biocrust Actinobacteria would decline during rewetting and revive with desiccation. Our results showed that hydration increased chlorophyll content and EPS production. As expected, biocrust rewetting activated Cyanobacteria, which replaced the former dominant Actinobacteria, boosting potential autotrophic functions. However, desiccation of the biocrust did not immediately change the bacterial composition or potential function and was followed by a delayed decrease in chlorophyll and EPS levels. This dramatic shift in the community upon rewetting led to modifications in ecosystem services. We propose that following a rain event, the response of the active bacterial community lagged behind the biocrust water content due to the production of EPS which delayed desiccation and temporarily sustained the biocrust community activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data (raw reads) are available in Bioproject under the submission number PRJNA718159.

References

  1. Aanderud ZT, Bahr J, Robinson DM, Belnap J, Campbell TP, Gill RA, McMillian B, St. Clair S (2019) The burning of biocrusts facilitates the emergence of a bare soil community of poorly-connected chemoheterotrophic bacteria with depressed ecosystem services. Front Ecol Evol 7:1–14. https://doi.org/10.3389/fevo.2019.00467

    Article  Google Scholar 

  2. Agarwal L, Qureshi A, Kalia VC, Kapley A, Purohit HJ, Singh RN (2014) Arid ecosystem: future option for carbon sinks using microbial community intelligence. Curr Sci 106:1357–1363

    CAS  Google Scholar 

  3. Angel R (2012) Total nucleic acid extraction from soil. Research Square - Protocols, 1–5. https://doi.org/10.1038/protex.2012.046

  4. Angel R, Conrad R (2013) Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol 15:2799–2815. https://doi.org/10.1111/1462-2920.12140

    Article  CAS  PubMed  Google Scholar 

  5. Angel R, Pasternak Z, Soares MIM, Conrad R, Gillor O (2013) Active and total prokaryotic communities in dryland soils. FEMS Microbiol Ecol 86:130–138. https://doi.org/10.1111/1574-6941.12155

    Article  CAS  PubMed  Google Scholar 

  6. Bache SM, Wickham H, Henry L (2014) Magrittr: a forward-pipe operator for R. R Package Version 2.0.3

  7. Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, Stamatakis A (2019) EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. https://doi.org/10.1093/sysbio/syy054

    Article  PubMed  Google Scholar 

  8. Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241. https://doi.org/10.1038/ismej.2013.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baubin C, Farrell AM, Šťovíček A, Ghazaryan L, Giladi I, Gillor O (2019) Seasonal and spatial variability in total and active bacterial communities from desert soil. Pedobiologia (Jena) 74:7–14. https://doi.org/10.1016/J.PEDOBI.2019.02.001

    Article  Google Scholar 

  10. Bay SK, McGeoch MA, Gillor O, Wieler N, Palmer DJ, Baker DJ, Chown SL, Greening C (2020) Soil bacterial communities exhibit strong biogeographic patterns at fine taxonomic resolution. mSystems 5:1–16. https://doi.org/10.1128/msystems.00540-20

    Article  CAS  Google Scholar 

  11. Belnap J (1999) Structure and function of biological soil crusts. In: Sagebrush steppe ecosystems symposium, pp 55–62

  12. Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management. Springer. https://doi.org/10.1639/0007-2745(2002)105[0500:]2.0.co;2

    Book  Google Scholar 

  13. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068. https://doi.org/10.1038/ismej.2013.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

  15. Borisov VB, Forte E, Davletshin A, Mastronicola D, Sarti P, Giuffrè A (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress. FEBS Lett 587:2214–2218. https://doi.org/10.1016/j.febslet.2013.05.047

    Article  CAS  PubMed  Google Scholar 

  16. Bowker MA, Reed SC, Maestre FT, Eldridge DJ (2018) Biocrusts: the living skin of the earth. Plant Soil 429:1–7. https://doi.org/10.1007/s11104-018-3735-1

    Article  CAS  Google Scholar 

  17. Bruins HJ (2012) Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J Arid Environ 86:28–42. https://doi.org/10.1016/j.jaridenv.2012.01.015

    Article  Google Scholar 

  18. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247. https://doi.org/10.1007/s00248-008-9449-9

    Article  PubMed  Google Scholar 

  19. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cameron RE, Blank GB (1966) Desert algae: soil crusts and diaphanous substrata as algal habitats. National Aeronautics and Space Administration, Pasadena, California

  21. Campbell SE, Seeler J, Golubic S (1989) Desert crust formation and soil stabilization. Arid Soil Res Rehabil 3:217–228. https://doi.org/10.1080/15324988909381200

    Article  Google Scholar 

  22. Carter MR, Gregorich EG (2008) Soil sampling and methods of analysis (Second Edition), Canadian Society of Soil Science. CRC Press. https://doi.org/10.1017/s0014479708006546

  23. Castillo-Monroy AP, Maestre FT, Rey A, Soliveres S, Garcia-Palacios P (2011) Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. Ecosystems 14:835–847. https://doi.org/10.1007/s10021-011-9449-3

    Article  CAS  Google Scholar 

  24. Castle SC, Morrison CD, Barger NN (2010) Extraction of chlorophyll a from biological soil crusts: a comparison of solvents for spectrophotometric determination. Soil Biol Biochem 43:853–856. https://doi.org/10.1016/j.soilbio.2010.11.025

    Article  CAS  Google Scholar 

  25. Colica G, Li H, Rossi F, Li D, Liu Y, de Philippis R (2014) Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70. https://doi.org/10.1016/j.soilbio.2013.09.017

    Article  CAS  Google Scholar 

  26. Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, King GM, Greening C (2019) Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J 13:2868–2881. https://doi.org/10.1038/s41396-019-0479-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Couradeau E, Giraldo-Silva A, de Martini F, Garcia-Pichel F (2019) Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7:1–12. https://doi.org/10.1186/s40168-019-0661-2

    Article  Google Scholar 

  28. Czech L, Barbera P, Stamatakis A (2020) Genesis and Gappa: Processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics 36:3263–3265. https://doi.org/10.1093/bioinformatics/btaa070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dechesne A, Wang G, Gülez G, Or D, Smets BF (2010) Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci U S A 107:14369–14372. https://doi.org/10.1073/pnas.1008392107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dinno A (2017) dunn.test: Dunn’s test of multiple comparisons using rank sums. R Package Version 1.3.5

  31. Douglas GM, Maffel VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MG (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. https://doi.org/10.1038/s41587-020-0550-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. https://pubs.acs.org/sharingguidelines

  33. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252

    Article  Google Scholar 

  34. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  35. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216. https://doi.org/10.1146/annurev.mi.37.100183.001201

    Article  CAS  PubMed  Google Scholar 

  36. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H 2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777. https://doi.org/10.1038/ismej.2015.153

    Article  CAS  PubMed  Google Scholar 

  37. Halverson LJ, Jones TM, Firestone MK (2000) Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–1637. https://doi.org/10.2136/sssaj2000.6451630x

    Article  CAS  Google Scholar 

  38. Hansen BB, Henriksen S, Aanes R, Sæther BE (2007) Ungulate impact on vegetation in a two-level trophic system. Polar Biol 30:549–558. https://doi.org/10.1007/s00300-006-0212-8

    Article  Google Scholar 

  39. Harris RF (1981) Effect of water potential on microbial growth and activity. In: Water potential relations in soil microbiology, pp 23–95. https://doi.org/10.2136/sssaspecpub9.c2

  40. Henrikus SS, Wood EA, McDonald JP, Cox MM, Woodgate R, Goodman MF, van Oijen AM, Robinson A (2018) DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genet 14:1–29. https://doi.org/10.1371/journal.pgen.1007161

    Article  CAS  Google Scholar 

  41. Hill AJ, Lincoln NK, Rachmilevitch S, Shelef O (2020) Modified hiltner dew balance to re-estimate dewfall accumulation as a reliable water source in the Negev Desert. Water (Switzerland) 12(10):1–10. https://doi.org/10.3390/w12102952

  42. Hoogsteen MJJ, Lantinga EA, Bakker EJ, Groot JCJ, Tittonell PA (2015) Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. Eur J Soil Sci 66:320–328. https://doi.org/10.1111/ejss.12224

    Article  CAS  Google Scholar 

  43. Kaneshisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.3892/ol.2020.11439

    Article  CAS  Google Scholar 

  44. Karaoz U, Couradeau E, da Rocha UN, Lim HC, Northen T, Garcia-Pichel F, Brodie EL (2018) Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. mBio 9:1–17. https://doi.org/10.1128/mBio.01366-16

    Article  Google Scholar 

  45. Kedem I, Treves H, Noble G, Hagemann M, Murik O, Raanan H, Oren N, Giordano M, Kaplan A (2020) Keep your friends close and your competitors closer: novel interspecies interaction in desert biological sand crusts. Phycologia 00:1–8. https://doi.org/10.1080/00318884.2020.1843349

    Article  CAS  Google Scholar 

  46. Kidron GJ (1999) Altitude dependent dew and fog in the Negev Desert, Israel. Agric For Meteorol 96:1–8

    Article  Google Scholar 

  47. Kidron GJ, Tal SY (2012) The effect of biocrusts on evaporation from sand dunes in the Negev Desert. Geoderma 179–180:104–112. https://doi.org/10.1016/j.geoderma.2012.02.021

    Article  Google Scholar 

  48. Kidron GJ, Herrnstadt I, Barzilay E (2002) The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J Arid Environ 52:517–533. https://doi.org/10.1006/jare.2002.1014

    Article  Google Scholar 

  49. Kidron GJ, Li XR, Jia RL, Gao YH, Zhang P (2015) Assessment of carbon gains from biocrusts inhabiting a dunefield in the Negev Desert. Geoderma 253–254:102–110. https://doi.org/10.1016/j.geoderma.2015.04.015

    Article  CAS  Google Scholar 

  50. Kidron GJ, Wang Y, Herzberg M (2020) Exopolysaccharides may increase biocrust rigidity and induce runoff generation. J Hydrol 588:125081. https://doi.org/10.1016/j.jhydrol.2020.125081

    Article  Google Scholar 

  51. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

    Article  Google Scholar 

  52. Lan S, Wu L, Zhang D, Hu C (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environmental Earth Sciences 65:77–88. https://doi.org/10.1007/s12665-011-1066-0

    Article  Google Scholar 

  53. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Micro 9:119–130

    Article  CAS  Google Scholar 

  54. León-Sobrino C, Ramond JB, Maggs-Kölling G, Cowan DA (2019) Nutrient acquisition, rather than stress response over diel cycles, drives microbial transcription in a hyper-arid Namib desert soil. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.01054

    Article  Google Scholar 

  55. Leung PM, Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, Woebken D, Greening C (2020) Energetic basis of microbial growth and persistence in desert ecosystems. mSystems 5:1–14. https://doi.org/10.1128/msystems.00495-19

  56. Louca S, Doebeli M (2018) Efficient comparative phylogenetics on large trees. Bioinformatics 34:1053–1055. https://doi.org/10.1093/bioinformatics/btx701

    Article  CAS  PubMed  Google Scholar 

  57. Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97. https://doi.org/10.1016/j.jaridenv.2010.10.001

    Article  Google Scholar 

  58. Malek E, McCurdy G, Giles B (1999) Dew contribution to the annual water balances in semi-arid desert valleys. J Arid Environ 42:71–80. https://doi.org/10.1006/jare.1999.0506

    Article  Google Scholar 

  59. Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130. https://doi.org/10.1016/0168-6496(96)00050-5

    Article  CAS  Google Scholar 

  60. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4). https://doi.org/10.1371/JOURNAL.PONE.0061217

  61. Meier DV, Imminger S, Gillor O, Woebken D (2021) Distribution of mixotrophy and desiccation survival mechanisms across microbial genomes in an arid biological soil crust community. mSystems 6:1–20. https://doi.org/10.1128/msystems.00786-20

    Article  CAS  Google Scholar 

  62. Murik O, Oren N, Shotland Y, Raanan H, Treves H, Kedem I, Keren N, Hagemann M, Pade N, Kaplan A (2017) What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Environ Microbiol 19:535–550. https://doi.org/10.1111/1462-2920.13486

    Article  CAS  PubMed  Google Scholar 

  63. Murrell P (2018) Grid: a rewrite of the graphics layout capabilities, plus some support for interaction. R Package Version 4.3.0. https://doi.org/10.1201/b10966-6

  64. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–52. https://doi.org/10.1146/annurev.es.04.110173.000325

    Article  Google Scholar 

  65. Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, Truong V, Buenrostro M, Bowen BP, Garcia-Pichel F, Mukhopadhyay A, Northen TR, Brodie EL (2015) Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front Microbiol 6:277. https://doi.org/10.3389/fmicb.2015.00277

    Article  PubMed  PubMed Central  Google Scholar 

  66. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2014) Vegan: community ecology package. R package version 2.5-1

  67. Oren N, Raanan H, Murik O, Keren N, Kaplan A (2017) Dawn illumination prepares desert cyanobacteria for dehydration. Curr Biol 27:R1056–R1057. https://doi.org/10.1016/j.cub.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  68. Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O (2019) Desert cyanobacteria prepare in advance for dehydration and rewetting: the role of light and temperature sensing. Mol Ecol 28:2305–2320. https://doi.org/10.1111/mec.15074

    Article  CAS  PubMed  Google Scholar 

  69. Péli ER, Lei N, Pócs T, Laufer Z, Porembski S, Tuba Z (2011) Ecophysiological responses of desiccation-tolerant cryptobiotic crusts. Cent Eur J Biol 6:838–849. https://doi.org/10.2478/s11535-011-0049-1

    Article  Google Scholar 

  70. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. https://doi.org/10.1038/nrmicro2831

    Article  CAS  PubMed  Google Scholar 

  71. Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458

    Article  CAS  PubMed  Google Scholar 

  72. Preiss J, Sivak M (1999) 3.14 - Starch and glycogen biosynthesis. In: Barton SD, Nakanishi K, Meth-Cohn OBT-CNPC (eds). Pergamon, Oxford, pp 441–495. https://doi.org/10.1016/B978-0-08-091283-7.00082-5

  73. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J, Axen SD, Shih PM, Bouskill NJ, Bowen BP, Kerfeld CA, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191. https://doi.org/10.1038/ismej.2013.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Repar J, Briski N, Buljubašić M, Zahradka K, Zahradka D (2012) Exonuclease VII is involved in “reckless” DNA degradation in UV-irradiated Escherichia coli. Mutat Res 750:96–104. https://doi.org/10.1016/j.mrgentox.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  76. Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41. https://doi.org/10.1007/s11120-006-9065-9

    Article  CAS  PubMed  Google Scholar 

  77. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291. https://doi.org/10.1128/aem.58.4.1284-1291.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Román JR, Roncero-Ramos B, Rodríguez-Caballero E, Chamizo S, Cantón Y (2021) Effect of water availability on induced cyanobacterial biocrust development. Catena (Amst) 197:104988. https://doi.org/10.1016/j.catena.2020.104988

    Article  CAS  Google Scholar 

  79. Shelef O, Groner E (2011) Linking landscape and species: effect of shrubs on patch preference of beetles in arid and semi-arid ecosystems. J Arid Environ 75(10):960–967. https://doi.org/10.1016/j.jaridenv.2011.04.016

    Article  Google Scholar 

  80. Sklarz MY, Levin L, Gordon M, Chalifa-Caspi V (2018) NeatSeq-Flow: a lightweight high throughput sequencing workflow platform for non-programmers and programmers alike. bioRxiv 173005. https://doi.org/10.1101/173005

  81. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191. https://doi.org/10.1128/mmbr.00015-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Steven B, Belnap J, Kuske CR (2018) Chronic physical disturbance substantially alters the response of biological soil crusts to a wetting pulse, as characterized by metatranscriptomic sequencing. Front Microbiol 9:2382. https://doi.org/10.3389/fmicb.2018.02382

    Article  PubMed  PubMed Central  Google Scholar 

  83. Št’ovíček A, Kim M, Or D, Gillor O (2017) Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep 7:45735. https://doi.org/10.1038/srep45735

    Article  CAS  Google Scholar 

  84. Sukenik A, Kaplan-Levy RN, Welch JM, Post AF (2012) Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J 6:670–679. https://doi.org/10.1038/ismej.2011.128

    Article  CAS  PubMed  Google Scholar 

  85. Sunyer-Figueres M, Wang C, Mas A (2018) Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR. Int J Food Microbiol 270:1–4. https://doi.org/10.1016/j.ijfoodmicro.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  86. Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, von Bergen M, Herbold C, Wagner M, Richter A, Svenning MM (2019) Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci U S A 116:8515–8524. https://doi.org/10.1073/pnas.1817812116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR (2019) Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio 10. https://doi.org/10.1128/mBio.02287-19

  88. Veste M, Littmann T, Friedrich H, Breckle SW (2001) Microclimatic boundary conditions for activity of soil lichen crusts in sand dunes of the north-western Negev desert, Israel. Flora 196:465–474. https://doi.org/10.1016/S0367-2530(17)30088-9

    Article  Google Scholar 

  89. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New York. https://doi.org/10.1007/978-0-387-98141-3

  90. Wickham H (2017) Scales: scale functions for visualization. R Package Version 1.0.0. https://cran.r-project.org/web/packages/scales/scales.pdf

  91. Wickham H, Francois R, Henry L, Müller K (2018) dplyr: a grammar of data manipulation. R Package Version 0.7.8

  92. Xu H-F, Raanan H, Dai G-Z, Oren N, Berkowicz S, Murik O, Kaplan A, Qiu B-S (2021) Reading and surviving the harsh conditions in desert biological soil crust: the cyanobacterial viewpoint. FEMS Microbiol Rev 45:fuab036. https://doi.org/10.1093/femsre/fuab036

    Article  CAS  PubMed  Google Scholar 

  93. Ye Y, Doak TG (2009) A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput Biol 5:e1000465. https://doi.org/10.1371/JOURNAL.PCBI.1000465

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zangvil A (1996) Six years of dew observations in the Negev Desert, Israel. J Arid Environ 32:361–371

    Article  Google Scholar 

  95. Zvyagintsev DG, Zenova GM, Doroshenko EA, Gryadunova AA, Gracheva TA, Sudnitsyn II (2007) Actinomycete growth in conditions of low moisture. Biology Bulletin 34:242–247. https://doi.org/10.1134/S1062359007030053

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Lusine Ghazaryan for technical support and to Ben Poodiack and Kate Kaufman for editing the manuscript.

Funding

This study was partially supported by the Israel Science Academy, grant no. 993/11.

Author information

Authors and Affiliations

Authors

Contributions

CB, OG, and HS conceptualized and designed the methodology; CB and OG collected the samples and metadata; CB and NR did the laboratory work and sequencing; CB did the formal analysis, visualization, data curation, and wrote the manuscript; CB, OG, HS, and NR did the reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Capucine Baubin or Osnat Gillor.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 369 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baubin, C., Ran, N., Siebner, H. et al. Divergence of Biocrust Active Bacterial Communities in the Negev Desert During a Hydration-Desiccation Cycle. Microb Ecol 86, 474–484 (2023). https://doi.org/10.1007/s00248-022-02063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02063-z

Keywords

Navigation