Skip to main content

Advertisement

Log in

Multifarious Responses of Forest Soil Microbial Community Toward Climate Change

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract 

Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No associated data marked.

Abbreviations

CO2 :

Carbon dioxide

CH4 :

Methane

N2O:

Nitrous oxides

ECM:

Ectomycorrhizal

AA:

Amino acids

AMF:

Arbuscular mycorrhizal fungi

PGPR:

Plant growth-promoting rhizobacteria

EMF:

Ectomycorrhizal fungi

MHB:

Mycorrhiza helper bacteria

SOM:

Soil organic matter

NH3 :

Ammonia

NO2 :

Nitrite

NO3 :

Nitrate

AOB:

Ammonia oxidizing bacteria

AMO:

Ammonia monooxygenase

N:

Nitrogen

P:

Phosphorus

ALD:

Active layer detachment

TDN:

Total dissolve nitrogen

FTN:

Freeze thaw cycles

FTF:

Freeze thaw temperature fluctuation

FT:

Freeze thaw

BCS:

Bacterial community structure

SOM:

Soil organic matter

MAT:

Mean annual temperature

SOC:

Soil organic carbon

DN:

Dissolved nitrogen

NUE:

Nutrient-use efficiencies

ITS:

Internal transcribed spacer

DOC:

Dissolved organic carbon

CUE:

Carbon use efficiency

NUE:

Nutrient use efficiencies

OTUs:

Operational taxonomic unit

PLFAs:

Phospholipid fatty acids

RRs:

Response ratios

MAT:

Mean annual temperature

MAP:

Mean annual precipitation

CFUs:

Colony forming unit

TDN:

Total dissolved nitrogen

CMR:

Carbon mineralization rate

References

  1. Waring RH, Running SW (2010) Forest Ecosystems: Analysis at Multiple Scales. 3rd edition, Academic Press, Elsevier.

  2. Salzmann U, Haywood AM, Lunt DJ, Valdes PJ, Hill DJ (2008) A new global biome reconstruction and data-model comparison for the middle Pliocene. Glob Ecol Biogeogr 17(3):432–447. https://doi.org/10.1111/j.1466-8238.2008.00381.x

    Article  Google Scholar 

  3. Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46. https://doi.org/10.1038/s41579-019-0265-7

    Article  CAS  PubMed  Google Scholar 

  4. Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27. https://doi.org/10.1016/j.foreco.2013.02.034

    Article  Google Scholar 

  5. Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G (2010) Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem 42:1558–1565. https://doi.org/10.1016/j.soilbio.2010.05.030

    Article  CAS  Google Scholar 

  6. Hättenschwiler S, Aeschlimann B, Coûteaux MM, Roy J, Bonal D (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175. https://doi.org/10.1111/j.1469-8137.2008.02438.x

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbial Rev 37:112–129. https://doi.org/10.1111/j.1574-6976.2012.00343.x

    Article  CAS  Google Scholar 

  8. Chandran H, Meena M, Sharma K (2020) Microbial biodiversity and bioremediation assessment through omics approaches. Front Environ Chem 1:570326. https://doi.org/10.3389/fenvc.2020.570326

    Article  Google Scholar 

  9. Meena M, Swapnil P, Divyanshu K, Kumar S, Harish TYN, Zehra A, Marwal A, Upadhyay RS (2020) PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 60(10):828–861. https://doi.org/10.1002/jobm.202000370

    Article  CAS  PubMed  Google Scholar 

  10. Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P (2019) Climate change microbiology—problems and perspectives. Nat Rev Microbiol 17:391–396. https://doi.org/10.1038/s41579-019-0178-5

    Article  CAS  PubMed  Google Scholar 

  11. Schuur EA, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G (2008) Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58(8):701–714. https://doi.org/10.1641/B580807

    Article  Google Scholar 

  12. Allison SD, Treseder KK (2011) Climate change feedbacks to microbial decomposition in boreal soils. Fungal Ecol 4:362–374. https://doi.org/10.1016/j.funeco.2011.01.003

    Article  Google Scholar 

  13. Bojko O, Kabala C (2017) Organic carbon pools in mountain soils—Sources of variability and predicted changes in relation to climate and land use changes. CATENA 149:209–220. https://doi.org/10.1016/j.catena.2016.09.022

    Article  CAS  Google Scholar 

  14. Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429. https://doi.org/10.1007/s10531-019-01760-5

    Article  Google Scholar 

  15. Bardgett RD, Caruso T (2020) Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos Trans R Soc B 375:20190112. https://doi.org/10.1098/rstb.2019.0112

    Article  CAS  Google Scholar 

  16. Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41(2):109–130. https://doi.org/10.1093/femsre/fuw040

    Article  CAS  PubMed  Google Scholar 

  17. Lladó S, López-Mondéjar R, Baldrian P (2018) Drivers of microbial community structure in forest soils. Appl Microbiol Biotechnol 102:4331–4338. https://doi.org/10.1007/s00253-018-8950-4

    Article  CAS  PubMed  Google Scholar 

  18. Furtak K, Galazka A (2019) Edaphic factors and their influence on the microbiological biodiversity of the soil environment. Adv Microbiol 58(4):375–384. https://doi.org/10.21307/PM-2019.58.4.375

  19. Bonneau M, Souchier B (1994) Pedology: Constituents and Soil Properties, vol 2. Masson Publisher, Paris

    Google Scholar 

  20. Gliński J (1999) Odczyn gleb (in) Gleboznawstwo, Zawadzki S (ed) Państwowe Wydawnictwo Rolnicze i Leśne. Warszawa, pp 220–227.

  21. Furtak K, Gałązka A, Niedźwiecki J (2020) Changes in soil enzymatic activity caused by hydric stress. Pol J Environ Stud 2020:29. https://doi.org/10.15244/pjoes/112896

  22. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879. https://doi.org/10.1890/11-1745.1

    Article  PubMed  Google Scholar 

  23. Franklin RB, Mills AL (2003) Multi-scale variation in spatial heterogeneity for microbial community structure in an Eastern Virginia agricultural field. FEMS Microbiol Ecol 44:335–346.

  24. Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of NH4+ and NO2–oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol 34:57–62.

  25. Morris SJ (1999) Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: fine scale variability and microscale patterns. Soil Biol Biochem 31(10):1375–1386. https://doi.org/10.1016/S0038-0717(99)00047-4

    Article  CAS  Google Scholar 

  26. O’Brien PA, Morrow KM, Willis BL, Bourne DG (2016) Implications of ocean acidification for marine microorganisms from the free-living to the host-associated. Front Mar Sci 3:47. https://doi.org/10.3389/fmars.2016.00047

    Article  Google Scholar 

  27. Uroz S, Buee M, Deveau A, Mieszkin S, Martin F (2016) Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol Biochem 103:471–488. https://doi.org/10.1016/j.soilbio.2016.09.006

    Article  CAS  Google Scholar 

  28. Senechkin IV, Speksnijder AGCL, Semenov AM, van Bruggen AHC, van Overbeek LS (2010) Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments. Microb Ecol 60:829–839. https://doi.org/10.1007/s00248-010-9670-1

    Article  PubMed  Google Scholar 

  29. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455. https://doi.org/10.1016/j.soilbio.2011.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. García-Fraile P, Benada O, Cajthaml T, Baldrian P, Lladó S (2016) Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl Environ Microbiol 82:560–569. https://doi.org/10.1128/aem.03353-15

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453. https://doi.org/10.1038/ismej.2008.127

    Article  CAS  PubMed  Google Scholar 

  32. Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environm Microbiol 78(20):7398–7406. https://doi.org/10.1128/AEM.01325-12

    Article  CAS  Google Scholar 

  33. Kielak AM, Castellane TCL, Campanharo JC, Colnago LA, Costa OYA, Corradi da Silva ML, Van Veen JA, Lemos EG, Kuramae EE (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 7:1–10. https://doi.org/10.1038/srep41193

    Article  CAS  Google Scholar 

  34. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  35. Bhattarai A, Bhattarai B, Pandey S (2015) Variation of soil microbial population in different soil horizons. J Microbiol Exp 2(2):75–78. https://doi.org/10.15406/jmen.2015.02.00044

    Article  Google Scholar 

  36. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. https://doi.org/10.1016/j.soilbio.2008.05.021

    Article  CAS  Google Scholar 

  37. Domínguez-Núñez JA, Albanesi AS (2019) Ectomycorrhizal fungi as biofertilizers in forestry. In: Beck A, Uhac S, De Marco AA (eds) Biostimulants in Plant Science. Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.88585

  38. Agerer R (2001) Exploration types of ectomycorrhizas. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114. https://doi.org/10.1007/s005720100108

    Article  Google Scholar 

  39. Fitter AH (2005) Darkens visible: Reflections on underground ecology. J Ecol 93(2):231–243. https://doi.org/10.1111/j.0022-0477.2005.00990.x

    Article  Google Scholar 

  40. Yadav G, Meena M (2021) Bioprospecting of endophytes in medicinal plants of Thar Desert: An attractive resource for biopharmaceuticals. Biotechnol Rep 30:e00629. https://doi.org/10.1016/j.btre.2021.e00629

    Article  CAS  Google Scholar 

  41. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, London, p 787

    Google Scholar 

  42. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. https://doi.org/10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  43. Sebastiana M, Martins J, Figueiredo A, Monteiro F, Sardans J, Peñuelas J, Silva A, Roepstorff P, Pais MS, Coelho AV (2017) Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza 27:109–128. https://doi.org/10.1007/s00572-016-0734-z

    Article  CAS  PubMed  Google Scholar 

  44. Kumar J, Atri NS (2018) Studies on ectomycorrhiza: an appraisal. Bot Rev 84:108–155. https://doi.org/10.1007/s12229-017-9196-z

    Article  Google Scholar 

  45. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 27:1–48. https://doi.org/10.1038/ncomms1046

    Article  CAS  Google Scholar 

  46. Harley JL (1989) The significance of mycorrhiza. Mycol Res 92(2):129–139. https://doi.org/10.1016/S0953-7562(89)80001-2

    Article  Google Scholar 

  47. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30(9):1129–1139. https://doi.org/10.1093/treephys/tpq063

    Article  CAS  PubMed  Google Scholar 

  48. Prieto I, Roldán A, Huygens D, Alguacil MM, Navarro-Cano JA, Querejeta JI (2016) Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant Soil 406:15–27. https://doi.org/10.1007/s11104-016-2860-y

    Article  CAS  Google Scholar 

  49. Chalot M, Plassard C (2011) Ectomycorrhiza and nitrogen provision to the host tree. In: Polacco JC, Todd CD (eds) Ecological Aspects of Nitrogen Metabolism in Plants. Wiley-Blackwell, England, pp 69–94

  50. Bonfante P (2018) The future has roots in the past: The ideas and scientists that shaped mycorrhizal research. New Phytol 220:982–995. https://doi.org/10.1111/nph.15397

    Article  PubMed  Google Scholar 

  51. Simard SW, Jones MD, Durall DM, Perry DA, Myrold DD, Molina R (1997) Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol 137(3):529–542. https://doi.org/10.1046/j.1469-8137.1997.00834.x

    Article  CAS  PubMed  Google Scholar 

  52. Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation-reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9:137–144

    Article  CAS  Google Scholar 

  53. Suz L, Azul AM, Pino-Bodas R, Martín MP (2012) Ectomycorrhizal fungi in biotechnology: Present and future perspectives. In: Kumar A, Prasad R (eds) Environment and Biotechnology. Lambert Academic Publishing, AG & Co, pp 472–542

    Google Scholar 

  54. Hupperts SF, Karst J, Pritsch K, Landhäusser SM (2017) Host phenology and potential saprotrophism of ectomycorrhizal fungi in the boreal forest. Funct Ecol 31:116–126. https://doi.org/10.1111/1365-2435.12695

    Article  Google Scholar 

  55. Claridge AW, May TW (1994) Mycophagy by Australian mammals. Austral J Ecol 19:251–275. https://doi.org/10.1111/j.1442-9993.1994.tb00489.x

    Article  Google Scholar 

  56. Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in Ecosystems. 1st edition, CAB International, Wallingford, pp 98–105

  57. Mao Y, Li X, Smyth EM, Yannarell AC, Mackie RI (2014) Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbial Rep 6:293–306. https://doi.org/10.1111/1758-2229.12152

    Article  CAS  Google Scholar 

  58. Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013) Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences 10:821–838. https://doi.org/10.5194/bg-10-821-2013

    Article  CAS  Google Scholar 

  59. Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:261. https://doi.org/10.3389/fmicb.2014.00261

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8:e55731. https://doi.org/10.1371/journal.pone.0055731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. https://doi.org/10.1111/j.1469-8137.2007.02191.x

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka M, Nara K (2009) Phylogenetic diversity of non-nodulating Rhizobium associated with pine ectomycorrhizae. FEMS Microbial Ecol 69:329–343. https://doi.org/10.1111/j.1574-6941.2009.00720.x

    Article  CAS  Google Scholar 

  63. Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbial 17:610–621. https://doi.org/10.1111/1462-2920.12452

    Article  Google Scholar 

  64. Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Boil 21:2082–2094. https://doi.org/10.1111/gcb.12816

    Article  Google Scholar 

  65. Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587. https://doi.org/10.1038/ismej.2014.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2):e00063-e116. https://doi.org/10.1128/MMBR.00063-16

    Article  PubMed  PubMed Central  Google Scholar 

  67. Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807. https://doi.org/10.1111/j.1469-8137.2006.01957.x

    Article  CAS  PubMed  Google Scholar 

  68. Tefs C, Gleixner G (2012) Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest–Evidence from C, N and 14C content. For Ecol Manag 263:131–137. https://doi.org/10.1016/j.foreco.2011.09.010

    Article  Google Scholar 

  69. Hasselquist NJ, Metcalfe DB, Marshall JD, Lucas RW, Högberg P (2016) Seasonality and nitrogen supply modify carbon partitioning in understory vegetation of a boreal coniferous forest. Ecology 97:3. https://doi.org/10.1890/15-0831.1

    Article  Google Scholar 

  70. Albarracín MV, Six J, Houlton BZ, Bledsoe CS (2013) A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia 173(4):1439–1450. https://doi.org/10.1007/s00442-013-2734-4

    Article  PubMed  Google Scholar 

  71. Izumi H, Finlay RD (2011) Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ Microbiol 13(3):819–830. https://doi.org/10.1111/j.1462-2920.2010.02393.x

    Article  PubMed  Google Scholar 

  72. Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288. https://doi.org/10.1111/j.1758-2229.2009.00117.x

    Article  CAS  PubMed  Google Scholar 

  73. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter — a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1):143–158. https://doi.org/10.1007/s11104-010-0391-5

    Article  CAS  Google Scholar 

  74. Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, Da Rocha UN, He Z, Pett-Ridge J, Brodie EL, Zhou J (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio 2015:6. https://doi.org/10.1128/mBio.00746-15

    Article  Google Scholar 

  75. Vik U, Logares R, Blaalid R, Halvorsen R, Carlsen T, Bakke I, Kolstø AB, Økstad OA, Kauserud H (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep 3:3471. https://doi.org/10.1038/srep03471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JH (2013) Linking litter decomposition of above-and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101(4):943–952. https://doi.org/10.1111/1365-2745.12092

    Article  CAS  Google Scholar 

  77. Lladó S, Baldrian P (2017) Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS ONE 12:e0171638. https://doi.org/10.1371/journal.pone.0171638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  79. Žifčáková L, Větrovský T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18(1):288–301. https://doi.org/10.1111/1462-2920.13026

    Article  CAS  PubMed  Google Scholar 

  80. Sterkenburg E, Bahr A, Brandström Durling M, Clemmensen KE, Lindahl BD (2015) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol 207:1145–1158. https://doi.org/10.1111/nph.13426

    Article  PubMed  Google Scholar 

  81. Šnajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppänen K, Baldrian P (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol Feb 75(2):291–303. https://doi.org/10.1111/j.1574-6941.2010.00999.x

  82. Kielak AM, Scheublin TR, Mendes LW, Van Veen JA, Kuramae EE (2016) Bacterial community succession in pine-wood decomposition. Front Microbial 7:231. https://doi.org/10.3389/fmicb.2016.00231

    Article  Google Scholar 

  83. Folman LB, Klein Gunnewiek PJ, Boddy L, De Boer W (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbial Ecol 63:181–191. https://doi.org/10.1111/j.1574-6941.2007.00425.x

    Article  CAS  Google Scholar 

  84. Sun H, Terhonen E, Kasanen R, Asiegbu FO (2014) Diversity and community structure of primary wood-inhabiting bacteria in boreal forest. Geomicrobiol J 31:315–324. https://doi.org/10.1080/01490451.2013.827763

    Article  CAS  Google Scholar 

  85. Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7. https://doi.org/10.1016/j.cbpa.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  86. Noll M, Jirjis R (2012) Microbial communities in large-scale wood piles and their effects on wood quality and the environment. Appl Microbiol Biotechnol 95:551–563. https://doi.org/10.1007/s00253-012-4164-3

    Article  CAS  PubMed  Google Scholar 

  87. Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S (2016) Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbial Ecol 92:fiw087. https://doi.org/10.1093/femsec/fiw087

  88. Zhang HB, Yang MX, Tu R, Gao L, Zhao ZW (2008) Fungal communities in decaying sapwood and heartwood of a conifer Keteleeria evelyniana. Curr Microbial 56:358–362. https://doi.org/10.1007/s00284-007-9092-6

    Article  CAS  Google Scholar 

  89. Jeremic D, Cooper P, Srinivasan U (2004) Comparative analysis of balsam fir wetwood, heartwood, and sapwood properties. Can J For Res 34:1241–1250. https://doi.org/10.1139/x03-287

    Article  Google Scholar 

  90. Johnston SR, Boddy L, Weightman AJ (2016) Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 2016:92. https://doi.org/10.1093/femsec/fiw179

    Article  CAS  Google Scholar 

  91. Zeng DH, Mao R, Chang SX, Li LJ, Yang D (2010) Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: a laboratory study. Appl Soil Ecol 44(2):133–137. https://doi.org/10.1016/j.apsoil.2009.11.002

    Article  Google Scholar 

  92. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99. https://doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  Google Scholar 

  93. Xia M, Talhelm AF, Pregitzer KS (2015) Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phytol 208:715–726. https://doi.org/10.1111/nph.13494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78:614–649. https://doi.org/10.1128/MMBR.00035-14

    Article  PubMed  PubMed Central  Google Scholar 

  95. Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962. https://doi.org/10.1093/femsre/fux049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79:1545–1554. https://doi.org/10.1128/AEM.03305-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Srivastava N, Srivastava M, Ramteke PW, Mishra PK (2019) Synthetic biology strategy for microbial cellulases: an overview. In: Singh HB, Gupta VK, Jogaiah S (eds) New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Genes Biochemistry and Applications. 2019:229–238. https://doi.org/10.1016/B978-0-444-63503-7.00014-0

  98. Větrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 9:e89108. https://doi.org/10.1371/journal.pone.0089108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:1–12. https://doi.org/10.1038/srep25279

    Article  CAS  Google Scholar 

  100. Brumm PJ (2013) Bacterialgenomes: what they teach us about cellulose degradation. Biofuels 4:669–681. https://doi.org/10.4155/bfs.13.44162

    Article  CAS  Google Scholar 

  101. Llado S, Benada O, Cajthaml T, Baldrian P, Garcia-Fraile P (2016) Silvibacterium bohemicum gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park. Syst Appl Microbiol 39:14–19. https://doi.org/10.1016/j.syapm.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  102. Lopez-Mondejar R, Zuhlke D, Vetrovsky T, Becher D, Riedel K, Baldrian P (2016) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:104. https://doi.org/10.1186/s13068-016-0518-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:224. https://doi.org/10.1371/journal.pone.0000224

    Article  CAS  Google Scholar 

  104. Vodovnik M, Duncan SH, Reid MD, Cantlay L, Turner K, Parkhill J, Lamed R, Yeoman CJ, Miller MEB, White BA, Bayer EA (2013) Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. PLoS ONE 8:65333. https://doi.org/10.1371/journal.pone.0065333

    Article  CAS  Google Scholar 

  105. Wegmann U, Louis P, Goesmann A, Henrissat B, Duncan SH, Flint HJ (2014) Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ Microbial 16:2879–2890. https://doi.org/10.1111/1462-2920.12217

    Article  CAS  Google Scholar 

  106. Bandounas L, Wierckx NJ, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11(1):1–11. https://doi.org/10.1186/1472-6750-11-94

  107. Savi F, Di Bene C, Canfora L, Mondini C, Fares S (2016) Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest. Agric For Meteorol 226:67–79. https://doi.org/10.1016/j.agrformet.2016.05.014

    Article  Google Scholar 

  108. Serrano-Silva N, Sarria-Guzmán Y, Dendooven L, Luna-Guido M (2014) Methanogenesis and methanotrophy in soil: a review. Pedosphere 24:291–307. https://doi.org/10.1016/S1002-0160(14)60016-3

    Article  CAS  Google Scholar 

  109. Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbial 15(9):2395–2417. https://doi.org/10.1111/1462-2920.12149

    Article  CAS  Google Scholar 

  110. Shoemaker JK, Keenan TF, Hollinger DY, Richardson AD (2014) Forest ecosystem changes from annual methane source to sink depending on late summer water balance. Geophys Res Lett 41:673–679. https://doi.org/10.1002/2013GL058691

    Article  Google Scholar 

  111. Van Insberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, Mohn WW (2015) Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J 9:2435–2441. https://doi.org/10.1038/ismej.2015.54

    Article  CAS  Google Scholar 

  112. Isobe K, Koba K, Otsuka S, Senoo K (2011) Nitrification and nitrifying microbial communities in forest soils. J For Res 16:351. https://doi.org/10.1007/s10310-011-0266-5

    Article  CAS  Google Scholar 

  113. Long X, Chen C, Xu Z, Oren R, He JZ (2012) Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biol Biochem 46:163–171. https://doi.org/10.1016/j.soilbio.2011.12.013

    Article  CAS  Google Scholar 

  114. Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25. https://doi.org/10.1016/j.soilbio.2014.03.021

    Article  CAS  Google Scholar 

  115. Pajares S, Bohannan BJ (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045. https://doi.org/10.3389/fmicb.2016.01045

    Article  PubMed  PubMed Central  Google Scholar 

  116. Laverman AM, Speksnijder AGCL, Braster M, Kowalchuk GA, Verhoef HA, Van Verseveld HW (2001) Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microb Ecol 42:35–45. https://doi.org/10.1007/s002480000038

    Article  CAS  PubMed  Google Scholar 

  117. Szukics U, Hackl E, Zechmeister-Boltenstern S, Sessitsch A (2012) Rapid and dissimilar response of ammonia oxidizing archaea and bacteria to nitrogen and water amendment in two temperate forest soils. Microbiol Res 167:103–109. https://doi.org/10.1016/j.micres.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  118. Hole L, Engardt M (2008) Climate change impact on atmospheric nitrogen deposition in Northwestern Europe: a model study. Ambio 37(1):9–17. https://doi.org/10.1579/0044-7447(2008)37[9:ccioan]2.0.co;2

  119. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996. https://doi.org/10.1104/pp.111.175448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, Schulz S (2016) Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ Microbial 18:1988–2000. https://doi.org/10.1111/1462-2920.13188

    Article  CAS  Google Scholar 

  121. Bergkemper F, Kublik S, Lang F, Krüger J, Vestergaard G, Schloter M, Schulz S (2016) Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil. J Microbiol Methods 125:91–97. https://doi.org/10.1016/j.mimet.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  122. Grubb DG, Guimaraes MS, Valencia R (2000) Phosphate immobilization using an acidic type F fly ash. J Hazard Mater 76(2–3):217–236. https://doi.org/10.1016/S0304-3894(00)00200-4

    Article  CAS  PubMed  Google Scholar 

  123. Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511. https://doi.org/10.1038/nature13855

    Article  CAS  PubMed  Google Scholar 

  124. Ahmad P, Hameed A, Abd-Allah EF, Sheikh SA, Wani MR, Rasool S, Jamsheed S, Kumar A (2013) Biochemicaland molecular approaches for drought tolerance in plants. In: Ahmad P, Wani MR (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, pp 1–29. https://doi.org/10.1007/978-1-4614-8600-8_1

  125. Kumar A, Gupta A, Azooz MM, Sharma S, Ahmad P, Dames J (2013) Genetic approaches to improve salinity tolerance in plants. In: Azooz MM, Prasad MNV, Ahmad P (eds) Salt Stress in Plants: Signalling, Omics and Adaptations. Springer, New York, NY, pp 63–78. https://doi.org/10.1007/978-1-4614-6108-1_4

  126. Hashem A, Abd Allah EF, Alqarawi AA, Radhakrishnan R, Kumar A (2017) Plant defense approach of bacillus subtilis (Bera 71) against Macrophomina phaseolina (tassi) Goid in mung bean. J Plant Interact 12:390–401. https://doi.org/10.1080/1742.9145.2017.1373871

    Article  CAS  Google Scholar 

  127. Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011) Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem 43:1417–1425. https://doi.org/10.1016/j.soilbio.2011.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peat land and boreal soils. Glob Change Biol 20:2971–2982. https://doi.org/10.1111/gcb.12585

  129. Delgado-Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochoa V, Gozalo B, Prado-Comesana A (2014) Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J Ecol 102:1592–1605. https://doi.org/10.1111/1365-2745.12303

    Article  CAS  Google Scholar 

  130. Whitaker J, Ostle N, Nottingham AT (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J Ecol 102:1058–1071. https://doi.org/10.1111/1365-2745.12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang L, Xie Z, Zhao R, Zhang Y (2018) Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Appl Soil Ecol 127:87–95. https://doi.org/10.1016/j.apsoil.2018.02.005

    Article  Google Scholar 

  132. DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104. https://doi.org/10.3389/fmicb.2015.00104

    Article  PubMed  PubMed Central  Google Scholar 

  133. Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang J, Elser JJ (2017) Carbon:nitrogen:phosphorus Stoichiometry in fungi: A meta-analysis. Front Microbiol 8:1281. https://doi.org/10.3389/fmicb.2017.01281

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620. https://doi.org/10.1111/j.1469-8137.2006.01936.x

    Article  CAS  PubMed  Google Scholar 

  136. Meena M, Dubey MK, Swapnil P, Zehra A, Singh S, Kumari P, Upadhyay RS (2017) The rhizosphere microbial community and methods of its analysis. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR Research. CAB International, pp 275–295

    Chapter  Google Scholar 

  137. Meena M, Swapnil P, Zehra A, Aamir M, Dubey MK, Upadhyay RS (2017) Beneficial microbes for disease suppression and plant growth promotion. In: Singh D, Singh H, Prabha R (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, pp 395–432. https://doi.org/10.1007/978-981-10-6593-4_16

  138. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  139. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822. https://doi.org/10.1126/science.aaa9092

    Article  CAS  PubMed  Google Scholar 

  140. Dunbar J, Steven B, Mueller R, Hesse C, Zak DR, Kuske CR (2014) Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3. Soil Biol Biochem 76:227–234. https://doi.org/10.1016/j.soilbio.2014.05.027

    Article  CAS  Google Scholar 

  141. García-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, Sylvain ZA, de Tomasel CM, Wall DH (2015) Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Change Biol 21:1590–1600. https://doi.org/10.1111/gcb.12788

  142. Yu H, He Z, Wang A, Xie J, Wu L, Van Nostrand JD, Jin D, Shao Z, Schadt CW, Zhou J, Deng Y (2018) Divergent responses of forest soil microbial communities under elevated CO2 in different depths of upper soil layers. Appl Environ Microbiol 84:e01694-e1717. https://doi.org/10.1128/AEM.01694-17

    Article  PubMed  Google Scholar 

  143. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373. https://doi.org/10.1073/pnas.1006463107

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jastrow JD, Michael Miller R, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric carbon dioxide increases soil carbon. Glob Change Biol 11:2057–2064. https://doi.org/10.1111/j.1365-2486.2005.01077.x

  145. Raison RJ, Khanna PK (2011) Possible impacts of climate change on forest soil health. In: Singh BP, Cowie AL, Chan KY (eds) Soil Health and Climate Change. Springer, Berlin, Heidelberg, pp 257–285. https://doi.org/10.1007/978-3-642-20256-8_12

  146. Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv 1:e1400082. https://doi.org/10.1126/sciadv.1400082

    Article  PubMed  PubMed Central  Google Scholar 

  147. Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171. https://doi.org/10.1038/nclimate2837

    Article  Google Scholar 

  148. Schimel JP (2018) Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol S 49:409–432. https://doi.org/10.1146/annurev-ecolsys-110617-062614

    Article  Google Scholar 

  149. Preece C, Verbruggen E, Liu L, Weedon JT, Peñuelas J (2019) Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biol Biochem 131:28–39. https://doi.org/10.1016/j.soilbio.2018.12.022

    Article  CAS  Google Scholar 

  150. Bastida F, López-Mondéjar R, Baldrian P, Andrés-Abellán M, Jehmlich N, Torres IF, García C, López-Serrano FR (2019) When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem. Sci Total Environ 662:276–286. https://doi.org/10.1016/j.scitotenv.2019.01.233

    Article  CAS  PubMed  Google Scholar 

  151. Gillespie LM, Fromin N, Milcu A, Buatois B, Pontoizeau C, Hättenschwiler S (2020) Higher tree diversity increases soil microbial resistance to drought. Commun Biol 3:1–12. https://doi.org/10.1038/s42003-020-1112-0

    Article  CAS  Google Scholar 

  152. Bastida F, Torres IF, Andrés-Abellán M, Baldrian P, López-Mondéjar R, Větrovský T, Richnow HH, Starke R, Ondoño S, García C, López-Serrano FR (2017) Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob Change Biol 23:4185–4203. https://doi.org/10.1111/gcb.13790

  153. Schütte UM, Henning JA, Ye Y, Bowling A, Ford J, Genet H, Waldrop MP, Turetsky MR, White JR, Bever JD (2019) Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response? J Ecol 107:1737–1752. https://doi.org/10.1111/1365-2745.13139

    Article  CAS  Google Scholar 

  154. Inglese CN, Christiansen CT, Lamhonwah D, Moniz K, Montross SN, Lamoureux S, Lafrenière M, Grogan P, Walker VK (2017) Examination of soil microbial communities after permafrost thaw subsequent to an active layer detachment in the high Arctic. Arct Antarct Alp Res 49:455–472. https://doi.org/10.1657/AAAR0016-066

    Article  Google Scholar 

  155. Liu M, Feng F, Cai T, Tang S (2020) Soil microbial community response differently to the frequency and strength of freeze–thaw events in a Larix gmelinii forest in the Daxing’an Mountains. China Front Microbiol 11:1164. https://doi.org/10.3389/fmicb.2020.01164

    Article  PubMed  Google Scholar 

  156. Monteux S, Weedon JT, Blume-Werry G, Gavazov K, Jassey VE, Johansson M, Keuper F, Olid C, Dorrepaal E (2018) Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME J 12:2129–2141. https://doi.org/10.6084/m9.figshare.5977471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wei S, Cui H, Zhu Y, Lu Z, Pang S, Zhang S, Dong H, Su X (2018) Shifts of methanogenic communities in response to permafrost thaw results in rising methane emissions and soil property changes. Extremophiles 22:447–459. https://doi.org/10.1007/s00792-018-1007-x

    Article  CAS  PubMed  Google Scholar 

  158. Coolen MJ, van de Giessen J, Zhu EY, Wuchter C (2011) Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbial 13:2299–2314. https://doi.org/10.1111/j.1462-2920.2011.02489.x

    Article  CAS  Google Scholar 

  159. Mondav R, McCalley CK, Hodgkins SB, Frolking S, Saleska SR, Rich VI, Crill PM (2017) Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environ Microbial 19:3201–3218. https://doi.org/10.1111/1462-2920.13809

    Article  CAS  Google Scholar 

  160. Chen J, Sun X, Zheng J, Zhang X, Liu X, Bian R, Li L, Cheng K, Zheng J, Pan G (2018) Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biol Fertil Soils 54:175–188. https://doi.org/10.1007/s00374-017-1253-6

    Article  CAS  Google Scholar 

  161. Chen Y, Liu F, Kang L, Zhang D, Kou D, Mao C, Qin S, Zhang Q, Yang Y (2020) Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Glob Change Biol 27(14):3218–3229. https://doi.org/10.1111/gcb.15487

  162. McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim EH, Mondav R, Crill PM, Chanton JP, Rich VI, Tyson GW, Saleska SR (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514:478–481. https://doi.org/10.1038/nature13798

  163. Li J, Bååth E, Pei J, Fang C, Nie M (2020) Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: an application of the square root (Ratkowsky) model. Glob Change Biol 27(6):1281–1292. https://doi.org/10.1111/gcb.15476

  164. Donhauser J, Qi W, Bergk-Pinto B, Frey B (2021) High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Glob Change Biol 27(7):1365–1386. https://doi.org/10.1111/GCB.15492

  165. Alster CJ, Koyama A, Johnson NG, Wallenstein MD, von Fischer JC (2016) Temperature sensitivity of soil microbial communities: an application of macromolecular rate theory to microbial respiration. J Geophys Res Biogeosci 121:1420–1433. https://doi.org/10.1002/2016JG003343

    Article  Google Scholar 

  166. Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, Blagodatsky S, Yang G, Zhang Q, Zhang D, Yu J, Yang Y (2018) Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat Commun 9:3951. https://doi.org/10.1038/s41467-018-06232-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Guo K, Zhao Y, Liu Y, Chen J, Wu Q, Ruan Y, Li S, Shi J, Zhao L, Sun X, Liang C (2020) Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil. Geoderma 363:114162. https://doi.org/10.1016/j.geoderma.2019.114162

    Article  CAS  Google Scholar 

  168. Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Leff JW, Salinas N, Silman MR, Kruuk LEB, Meir P (2018) Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99(11):2455–2466. https://doi.org/10.1002/ecy.2482

    Article  PubMed  Google Scholar 

  169. Donhauser J, Niklaus PA, Rousk J, Larose C, Frey B (2020) Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils. Soil Biol Biochem 148:107873. https://doi.org/10.1016/j.soilbio.2020.107873

    Article  CAS  Google Scholar 

  170. Alster CJ, Weller ZD, von Fischer JC (2018) A meta-analysis of temperature sensitivity as a microbial trait. Glob Change Boil 24:4211–4224. https://doi.org/10.1111/gcb.14342

  171. Walker TW, Kaiser C, Strasser F, Herbold CW, Leblans NI, Woebken D, Janssens IA, Sigurdsson BD, Richter A (2018) Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Chang 8:885–889. https://doi.org/10.1038/s41558-018-0259-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li G, Kim S, Han SH, Chang H, Du D, Son Y (2018) Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biol Biochem 120:212–221. https://doi.org/10.1016/j.soilbio.2018.02.014

    Article  CAS  Google Scholar 

  173. Moinet GY, Hunt JE, Kirschbaum MU, Morcom CP, Midwood AJ, Millard P (2018) The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol Biochem 116:333–339. https://doi.org/10.1016/j.soilbio.2017.10.031

    Article  CAS  Google Scholar 

  174. Zhao Q, Jian S, Nunan N, Maestre FT, Tedersoo L, He J, Wei H, Tan X, Shen W (2017) Altered precipitation seasonality impacts the dominant fungal but rare bacterial taxa in subtropical forest soils. Biol Fertil Soils 53:231–245. https://doi.org/10.1007/s00374-016-1171-z

    Article  Google Scholar 

  175. Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil MC, Gessler A, Galiano L, Miranda JC, Spor A, Barnard RL (2018) Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J 12:1061–1071. https://doi.org/10.1038/s41396-018-0079-zht

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhou Z, Wang C, Luo Y (2018) Response of soil microbial communities to altered precipitation: A global synthesis. Glob Ecol Biogeogr 27:1121–1136. https://doi.org/10.1111/geb.12761

    Article  Google Scholar 

  177. Ren C, Zhao F, Shi Z, Chen J, Han X, Yang G, Feng Y, Ren G (2017) Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biol Biochem 115:1–10. https://doi.org/10.1016/j.soilbio.2017.08.002

    Article  CAS  Google Scholar 

  178. Gabriel GV, Oliveira LC, Barros DJ, Bento MS, Neu V, Toppa RH, Carmo JB, Navarrete AA (2020) Methane emission suppression in flooded soil from Amazonia. Chemosphere 250:126263. https://doi.org/10.1016/j.chemosphere.2020.126263

    Article  CAS  PubMed  Google Scholar 

  179. Furtak K, Grządziel J, Gałązka A, Niedźwiecki J (2020) Prevalence of unclassified bacteria in the soil bacterial community from floodplain meadows (fluvisols) under simulated flood conditions revealed by a metataxonomic approachss. CATENA 188:104448. https://doi.org/10.1016/j.catena.2019.104448

    Article  CAS  Google Scholar 

  180. Zhu Y, Li Y, Zheng N, Chapman SJ, Yao H (2020) Similar but not identical resuscitation trajectories of the soil microbial community based on either DNA or RNA after flooding. Agronomy 10:502. https://doi.org/10.3390/agronomy10040502

    Article  CAS  Google Scholar 

  181. Sjøgaard KS, Valdemarsen TB, Treusch AH (2018) Responses of an agricultural soil microbiome to flooding with seawater after managed coastal realignment. Microorganisms 6:12. https://doi.org/10.3390/microorganisms6010012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fontúrbel MT, Barreiro A, Vega JA, Martín A, Jiménez E, Carballas T, Fernández C, Díaz-Raviña M (2012) Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma 191:51–60. https://doi.org/10.1016/j.geoderma.2012.01.037

    Article  Google Scholar 

  183. Brown SP, Veach AM, Horton JL, Ford E, Jumpponen A, Baird R (2019) Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appalachian Mountains. For Ecol Manag 451:117520. https://doi.org/10.1016/j.foreco.2019.117520

    Article  Google Scholar 

  184. Yang S, Zheng Q, Yang Y, Yuan M, Ma X, Chiariello NR, Docherty KM, Field CB, Gutknecht JL, Hungate BA, Niboyet A (2020) Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. Glob Change Biol 26:431–442. https://doi.org/10.1111/gcb.14852

  185. Pourreza M, Hosseini SM, Sinegani AAS, Matinizadeh M, Dick WA (2014) Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma 213:95–102. https://doi.org/10.1016/j.geoderma.2013.07.024

    Article  CAS  Google Scholar 

  186. Pérez-Valera E, Goberna M, Verdú M (2019) Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biol Biochem 129:80–89. https://doi.org/10.1016/j.soilbio.2018.11.007

    Article  CAS  Google Scholar 

  187. Semenova-Nelsen TA, Platt WJ, Patterson TR, Huffman J, Sikes BA (2019) Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol 224:916–927. https://doi.org/10.1111/nph.16096

    Article  PubMed  Google Scholar 

  188. Ludwig SM, Alexander HD, Kielland K, Mann PJ, Natali SM, Ruess RW (2018) Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Global Change 24:5841–5852. https://doi.org/10.1111/gcb.14455

    Article  Google Scholar 

  189. Fernández-García V, Marcos E, Reyes O, Calvo L (2020) Do fire regime attributes affect soil biochemical properties in the same way under different environmental conditions? Forests 11(3):274. https://doi.org/10.3390/f11030274

    Article  Google Scholar 

  190. Lybrand RA, Gallery RE, Trahan NA, Moore DJ (2018) Disturbance alters the relative importance of topographic and biogeochemical controls on microbial activity in temperate Montane forests. Forests 9:97. https://doi.org/10.3390/f9020097

    Article  Google Scholar 

  191. Fraterrigo JM, Rembelski MK (2021) Frequent fire reduces the magnitude of positive interactions between an invasive grass and soil microbes in temperate forests. Ecosystems 24(7):1738–1755. https://doi.org/10.1007/s10021-021-00615-x

    Article  CAS  Google Scholar 

  192. Giuditta E, Marzaioli R, Esposito A, Ascoli D, Stinca A, Mazzoleni S, Rutigliano FA (2020) Soil microbial diversity, biomass, and activity in two pine plantations of Southern Italy treated with prescribed burning. Forests 11:19. https://doi.org/10.3390/f11010019

    Article  Google Scholar 

  193. Whitman T, Whitman E, Woolet J, Flannigan MD, Thompson DK, Parisien MA (2019) Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol Biochem 138:107571. https://doi.org/10.1016/j.soilbio.2019.107571

    Article  CAS  Google Scholar 

  194. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790. https://doi.org/10.1038/nrmicro2439

    Article  CAS  PubMed  Google Scholar 

  195. Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perriere G, Simonet P, Nalin R (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70:5522–5527. https://doi.org/10.1128/AEM.70.9.5522-5527.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617. https://doi.org/10.1016/j.tim.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  197. Sheth RU, Cabral V, Chen SP, Wang HH (2016) Manipulating bacterial communities by in situ microbiome engineering. Trends Genet 32:189–200. https://doi.org/10.1016/j.tig.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Singh BK, Trivedi P (2017) Microbiome and the future for food and nutrient security. Microb Biotechnol 10:50–53. https://doi.org/10.1111/1751-7915.12592

    Article  PubMed  PubMed Central  Google Scholar 

  199. Chen PH, Liu HL, Chen YJ, Cheng YH, Lin WL, Yeh CH, Chang CH (2012) Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy Environ Sci 5:8318–8327. https://doi.org/10.1039/C2EE21124F

    Article  CAS  Google Scholar 

  200. Xiao L, Lian B, Hao J, Liu C, Wang S (2015) Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values. Sci Rep 5:7733. https://doi.org/10.1038/srep07733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang Z, Lian B, Hou W, Chen M, Li X, Li Y (2011) Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase. Afr J Microbiol Res 5(2):106–112. https://doi.org/10.5897/AJMR10.690

    Article  CAS  Google Scholar 

  202. Han J, Lian B, Ling H (2013) Induction of calcium carbonate by Bacillus cereus. Geomicrobiol J 30:682–689. https://doi.org/10.1080/01490451.2012.758194

    Article  CAS  Google Scholar 

  203. Komala T, Khun TC (2014) Biological carbon dioxide sequestration potential of Bacillus pumilus. Sains Malays 43(8):1149–1156

    Google Scholar 

  204. Peng S, Guo T, Liu G (2013) The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biol Biochem 57:411–417. https://doi.org/10.1016/j.soilbio.2012.10.026

    Article  CAS  Google Scholar 

  205. Pal A, Pandey S (2014) Role of glomalin in improving soil fertility. Int J Plant Soil Sci 3:1112–1129. https://doi.org/10.9734/IJPSS/2014/1128

    Article  Google Scholar 

  206. Nie M, Bell C, Wallenstein MD, Pendall E (2015) Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2. Sci Rep 5(1):9212. https://doi.org/10.1038/srep09212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bakken LR, Frostegård Å (2020) Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota. Curr Opin Environ Sustain 47:89–94. https://doi.org/10.1016/j.cosust.2020.08.010

    Article  Google Scholar 

  208. Hu HW, He JZ (2018) Manipulating the soil microbiome for improved nitrogen management. Microbiol Aust 39:24–27. https://doi.org/10.1071/MA18007

    Article  Google Scholar 

  209. Fisk LM, Barton L, Jones DL, Glanville HC, Murphy DV (2015) Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol Biochem 88:380–389. https://doi.org/10.1016/j.soilbio.2015.06.011

    Article  CAS  Google Scholar 

  210. Hu HW, He JZ, Singh BK (2017) Harnessing microbiome-based biotechnologies for sustainable mitigation of nitrous oxide emissions. Microb Biotechnol 10:1226–1231. https://doi.org/10.1111/1751-7915.12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Subbarao GV, Nakahara K, Hurtado MDP, Ono H, Moreta DE, Salcedo AF, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci USA 106:17302–17307. https://doi.org/10.1073/pnas.0903694106

    Article  PubMed  PubMed Central  Google Scholar 

  212. Bardon C, Piola F, Bellvert F, Haichar FEZ, Comte G, Meiffren G, Pommier T, Puijalon S, Tsafack N, Poly F (2014) Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites. New Phytol 204:620–630. https://doi.org/10.1111/nph.12944

    Article  CAS  PubMed  Google Scholar 

  213. Gray SB, Classen AT, Kardol P, Yermakov Z, Mille RM (2011) Multiple climate change factors interact to alter soil microbial community structure in an old-field ecosystem. Soil Sci Soc Am J 75:2217–2226. https://doi.org/10.2136/sssaj2011.0135

    Article  CAS  Google Scholar 

  214. Bell-Dereske L, Takacs-Vesbach C, Kivlin SN, Emery SM, Rudgers JA (2017) Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiol Ecol 93(6):fix036. https://doi.org/10.1093/femsec/fix036

  215. Torsvik V, Goksøyr J, Daae FL (1990) High diversity on DNA of soil bacteria. Appl Environ Microbiol 56(3):782–787. https://doi.org/10.1128/aem.56.3.782-787.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhang X, Zhang G, Chen Q, Han X (2013) Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE 8:e78616. https://doi.org/10.1371/journal.pone.0078616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Meena M, Swapnil P (2019) Regulation of WRKY genes in plant defense with beneficial fungus Trichoderma: Current perspectives and future prospects. Arch Phytopathology Plant Protect 52(1–2):1–17. https://doi.org/10.1080/03235408.2019.1606490

    Article  CAS  Google Scholar 

  218. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. https://doi.org/10.1038/ismej.2011.159

    Article  CAS  PubMed  Google Scholar 

  219. Sanschagrin S, Yergeau E (2014) Next-generation sequencing of 16S ribosomal RNA gene amplicons. J Vis Exp 90:51709. https://doi.org/10.3791/51709

  220. Patel CB, Singh VK, Singh AP, Meena M, Upadhyay RS (2019) Microbial genes involved in interaction with plants. In: New and Future Developments in Microbial Biotechnology and Bioengineering, Singh HB, Gupta VK, Jogaiah S (eds). Elsevier, Singapore. pp 171–180. https://doi.org/10.1016/B978-0-444-63503-7.00010-3

  221. Nannipieri P, Penton CR, Purahong W, Schloter M, Van Elsas JD (2019) Recommendations for soil microbiome analyses. Biol Fertil Soils 55:765–766. https://doi.org/10.1007/s00374-019-01409-z

    Article  Google Scholar 

  222. Muller EE, Glaab E, May P, Vlassis N, Wilmes P (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333. https://doi.org/10.1016/j.tim.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  223. Meena M, Swapnil P, Zehra A, Dubey MK, Aamir M, Patel CB, Upadhyay RS (2019) Virulence factors and their associated genes in microbes. In: Singh HB, Gupta VK, Jogaiah S (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp 181–208. https://doi.org/10.1016/B978-0-444-63503-7.00011-5

  224. McCarthy A (2010) Third generation DNA sequencing: Pacific Biosciences’ single molecule real-time technology. Chem Biol 17:675–676. https://doi.org/10.1016/j.chembiol.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  225. Garrett KA, Jumpponen A, Toomajian C, Gomez-Montano L (2012) Climate change and plant health: designing research spillover from plant genomics for understanding the role of microbial communities. Can J Plant Pathol 34:349–361. https://doi.org/10.1080/07060661.2012.706832

    Article  Google Scholar 

  226. Lan G, Li Y, Jatoi MT, Tan Z, Wu Z, Xie G (2017) Change in soil microbial community compositions and diversity following the conversion of tropical forest to rubber plantations in Xishuangbanan. Southwest China Trop Conserv Sci 10:1940082917733230. https://doi.org/10.1177/1940082917733230

    Article  Google Scholar 

  227. Harris JM, Balint-Kurti P, Bede JC, Day B, Gold S, Goss EM, Grenville-Briggs LJ, Jones KM, Wang A, Wang Y, Mitra RM (2020) What are the top 10 unanswered questions in molecular plant-microbe interactions? Mol Plant Microbe Interact 33:1354–1365. https://doi.org/10.1094/MPMI-08-20-0229-CR

    Article  CAS  PubMed  Google Scholar 

  228. Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13:413–429. https://doi.org/10.1038/s41396-018-0279-6

    Article  CAS  PubMed  Google Scholar 

  229. Zehra A, Meena M, Swapnil P, Raytekar NA, Upadhyay RS (2020) Sustainable approaches to remove heavy metals from water. In: Singh J, Vyas A, Wang S, Prasad R (eds) Microbial Biotechnology: Basic Research and Applications. Springer Singapore, pp 127–146. https://doi.org/10.1007/978-981-15-2817-0

  230. Sulman BN, Shevliakova E, Brzostek ER, Kivlin SN, Malyshev S, Menge DN, Zhang X (2019) Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Global Biogeochem Cycles 33:501–523. https://doi.org/10.1029/2018GB005973

    Article  CAS  Google Scholar 

  231. Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JA, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6:1–21. https://doi.org/10.1890/ES15-00217.1

    Article  Google Scholar 

  232. Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115:E1157–E1165. https://doi.org/10.1073/pnas.1717617115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Meena M, Swapnil P, Yadav G, Sonigra P (2021) Role of fungi in bio-production of nanomaterials at megascale. In: Sharma V, Shah M, Parmar S, Kumar A (eds) Fungi Bio-prospects in Sustainable Agriculture, Environment and Nano-technology: Volume 1: Fungal Diversity of Sustainable Agriculture. 1st Edition, Elsevier Inc. https://doi.org/10.1016/B978-0-12-821734-4.00006-X.

  234. Meena M, Zehra A, Swapnil P, Harish MA, Yadav G, Sonigra P (2021) Endophytic nanotechnology: an approach to study scope and potential applications. Front Chem Nanosci 9:613343. https://doi.org/10.3389/fchem.2021.613343

    Article  CAS  Google Scholar 

  235. Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM, Kivlin SN, Mann MA, Nuñez MA (2020) Climate disruption of plant-microbe interactions. Annu Rev Ecol Evol Syst 51:561–586. https://doi.org/10.1146/annurev-ecolsys-011720-090819

    Article  Google Scholar 

  236. Jia X, Zhou CJ (2012) Effects of long-term elevated CO2 on rhizosphere and bulk soil bacterial community structure in Pinus sylvestriformis seedlings fields. In: Wang D (ed.) Advanced Materials Research. Trans Tech Publications Ltd. Vol. 343, pp 351–356. https://doi.org/10.4028/www.scientific.net/AMR.343-344.351

  237. Kumari P, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS (2018) Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal Agric Biotechnol 16:163–171. https://doi.org/10.1016/j.bcab.2018.07.030

    Article  Google Scholar 

  238. Chandran H, Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep 26:e00450. https://doi.org/10.1016/j.btre.2020.e00450

    Article  Google Scholar 

  239. Aamir M, Rai KK, Dubey MK, Zehra A, Tripathi YN, Divyanshu K, Samal S, Upadhyay RS (2019) Impact of climate change on soil carbon exchange, ecosystem dynamics, and plant–microbe interactions. In: Climate Change and Agricultural Ecosystems. Woodhead Publishing, pp 379–413. https://doi.org/10.1016/B978-0-12-816483-9.00020-7

  240. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17(6):717–726. https://doi.org/10.1111/ele.12276

    Article  PubMed  PubMed Central  Google Scholar 

  241. Zehra A, Raytekar NA, Meena M, Swapnil P (2021) Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: a review. Curr Res Microb Sci 2:100054. https://doi.org/10.1016/j.crmicr.2021.100054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73:197–214. https://doi.org/10.1111/j.1574-6941.2010.00900.x

    Article  CAS  PubMed  Google Scholar 

  243. Mohanty SR, Bodelier PL, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31. https://doi.org/10.1111/j.1574-6941.2007.00370.x

    Article  CAS  PubMed  Google Scholar 

  244. Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Donald Z, Van Der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941. https://doi.org/10.1111/j.1462-2920.2007.01512.x

    Article  CAS  PubMed  Google Scholar 

  245. Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131:236–244. https://doi.org/10.1007/s00442-002-0868-x

    Article  PubMed  Google Scholar 

  246. Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M (2016) Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant Soil 407:203–215. https://doi.org/10.1007/s11104-016-2888-z

    Article  CAS  Google Scholar 

  247. Fransson P, Andersson A, Norström S, Bylund D, Bent E (2016) Ectomycorrhizal exudates and pre-exposure to elevated CO2 affects soil bacterial growth and community structure. Fungal Ecol 20:211–224. https://doi.org/10.1016/j.funeco.2016.01.003

    Article  Google Scholar 

  248. Pold G, Melillo JM, DeAngelis KM (2015) Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol 6:480. https://doi.org/10.3389/fmicb.2015.00480

    Article  PubMed  PubMed Central  Google Scholar 

  249. Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x

    Article  Google Scholar 

  250. Swathi AT, Rakesh M, Premsai SB, Louis ST, William KT, Subhash CM (2013) Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol Ecol 83:478–493. https://doi.org/10.1111/1574-6941.12009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author MM is thankful to Mohanlal Sukhadia University, Udaipur, for providing the necessary facilities during the course of study.

Funding

The authors are thankful to the University Grant Commission (UGC) under Startup Research Grant (UGC Faculty Research Promotion Scheme; FRPS), New Delhi, India, for the financial assistance (No.F.30–476/2019 (BSR) FD Diary No. 5662).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.M., G.Y., P.R.S., A.N., T.M.; methodology, M.M.; investigation, M.M.; resources, M.M., G.Y., P.R.S., N., T.M.; data curation, M.M., S.K.; writing original draft—M.M., G.Y., P.R.S., A.N., T.M.; writing—review and editing, M.M., G.Y., P.R.S., A.N., T.M., A.M., H., P.S.; visualization, M.M.; supervision, M.M.; and project administration, M.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mukesh Meena.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, M., Yadav, G., Sonigra, P. et al. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. Microb Ecol 86, 49–74 (2023). https://doi.org/10.1007/s00248-022-02051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02051-3

Keywords

Navigation