Skip to main content

Advertisement

Log in

Temporal Changes in Gut Microbiota Composition and Pollen Diet Associated with Colony Weakness of a Stingless Bee

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Compared to honeybees and bumblebees, the effect of diet on the gut microbiome of Neotropical corbiculate bees such as Melipona spp. is largely unknown. These bees have been managed for centuries, but recently an annual disease is affecting M. quadrifasciata, an endangered species kept exclusively by management in Southern Brazil. Here we report the results of a longitudinal metabarcoding study involving the period of M. quadrifasciata colony weakness, designed to monitor the gut microbiota and diet changes preceding an outbreak. We found increasing amounts of bacteria associated to the gut of forager bees 2 months before the first symptoms have been recorded. Simultaneously, forager bees showed decreasing body weight. The accelerated growth of gut-associated bacteria was uneven among taxa, with Bifidobacteriaceae dominating, and Lactobacillaceae decreasing in relative abundance within the bacterial community. Dominant fungi such as Candida and Starmerella also decreased in numbers, and the stingless bee obligate symbiont Zygosaccharomyces showed the lowest relative abundance during the outbreak period. Such changes were associated with pronounced diet shifts, i.e., the rise of Eucalyptus spp. pollen amount in forager bees’ guts. Furthermore, there was a negative correlation between the amount of Eucalyptus pollen in diets and the abundance of some bacterial taxa in the gut-associated microbiota. We conclude that diet and subsequent interactions with the gut microbiome are key environmental components of the annual disease and propose the use of diet supplementation as means to sustain the activity of stingless bee keeping as well as native bee pollination services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Sequencing data were deposited as a BioProject at NCBI under the accession PRJNA751106. Our R codes and datasets are available at https://github.com/klhaag/metabarcoding-melipona.

References

  1. Graves TA, Janousek WM, Gaulke SM et al (2020) Western bumble bee: declines in the continental United States and range-wide information gaps. Ecosphere 11:e03141. https://doi.org/10.1002/ecs2.3141

    Article  Google Scholar 

  2. Mathiasson ME, Rehan SM (2020) Wild bee declines linked to plant-pollinator network changes and plant species introductions. Insect Conserv Divers 13:595–605. https://doi.org/10.1111/icad.12429

    Article  Google Scholar 

  3. Soroye P, Newbold T, Kerr J (2020) Climate change contributes to widespread declines among bumble bees across continents. Science 367:685–688. https://doi.org/10.1126/science.aax8591

    Article  CAS  PubMed  Google Scholar 

  4. LeBuhn G, Vargas Luna J (2021) Pollinator decline: what do we know about the drivers of solitary bee declines? Curr Opin Insect Sci 46:106–111. https://doi.org/10.1016/j.cois.2021.05.004

    Article  PubMed  Google Scholar 

  5. Siviter H, Bailes EJ, Martin CD et al (2021) Agrochemicals interact synergistically to increase bee mortality. Nature 596:389–392. https://doi.org/10.1038/s41586-021-03787-7

    Article  CAS  PubMed  Google Scholar 

  6. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Let 6:562–565. https://doi.org/10.1098/rsbl.2009.0986

    Article  Google Scholar 

  7. Dolezal AG, Toth AL (2018) Feedbacks between nutrition and disease in honey bee health. Curr Opin Insect Sci 26:114–119. https://doi.org/10.1016/j.cois.2018.02.006

    Article  PubMed  Google Scholar 

  8. Harris EV, de Roode JC, Gerardo NM (2019) Diet–microbiome–disease: investigating diet’s influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog 15:e1007891. https://doi.org/10.1371/journal.ppat.1007891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng H, Perreau J, Powell JE et al (2019) Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Pnas 116:25909–25916. https://doi.org/10.1073/pnas.1916224116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwong WK, Mancenido AL, Moran NA (2017) Immune system stimulation by the native gut microbiota of honey bees. Royal Soc Open Sci 4:170003. https://doi.org/10.1098/rsos.170003

    Article  CAS  Google Scholar 

  11. Daisley BA, Chmiel JA, Pitek AP et al (2020) Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol 28:1010–1021. https://doi.org/10.1016/j.tim.2020.06.006

    Article  CAS  PubMed  Google Scholar 

  12. Raymann K, Moran NA (2018) The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci 26:97–104. https://doi.org/10.1016/j.cois.2018.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ellegaard KM, Suenami S, Miyazaki R, Engel P (2020) Vast differences in strain-level diversity in the gut microbiota of two closely related honey bee species. Curr Biol 30:2520-2531.e7. https://doi.org/10.1016/j.cub.2020.04.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwong WK, Medina LA, Koch H et al (2017) Dynamic microbiome evolution in social bees. Sci Adv 3:e1600513. https://doi.org/10.1126/sciadv.1600513

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramírez SR, Nieh JC, Quental TB et al (2010) A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae). Mol Phylogenet Evol 56:519–525. https://doi.org/10.1016/j.ympev.2010.04.026

    Article  PubMed  Google Scholar 

  16. Cerqueira AES, Hammer TJ, Moran NA et al (2021) Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. Isme J 15:2813–2816. https://doi.org/10.1038/s41396-021-01000-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Figueroa LL, Maccaro JJ, Krichilsky E et al (2021) Why did the bee eat the chicken? Symbiont Gain, Loss, and Retention in the Vulture Bee Microbiome. mBio 12:e02317-21. https://doi.org/10.1128/mBio.02317-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McFrederick QS, Rehan SM (2019) Wild bee pollen usage and microbial communities co-vary across landscapes. Microb Ecol 77:513–522. https://doi.org/10.1007/s00248-018-1232-y

    Article  CAS  PubMed  Google Scholar 

  19. Ludvigsen J, Rangberg A, Avershina E et al (2015) Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Environ 30:235–244. https://doi.org/10.1264/jsme2.ME15019

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pedro SR (2014) The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 61:348–354. https://doi.org/10.13102/sociobiology.v61i4.348-354

    Article  Google Scholar 

  21. Jaffé R, Pope N, Carvalho AT et al (2015) Bees for development: Brazilian survey reveals how to optimize stingless beekeeping. PLOS ONE 10

  22. dos Santos CF, Raguse-Quadros M, Ramos JD et al (2021) Diversidade de abelhas sem ferrão e seu uso como recurso natural no Brasil: permissões e restrições legais consorciadas a políticas públicas. Revista Brasileira de Meio Ambiente 9:002–022

    Google Scholar 

  23. Díaz S, de Souza US, Caesar L et al (2017) Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. J Invertebr Pathol 143:35–39. https://doi.org/10.1016/j.jip.2016.11.012

    Article  PubMed  Google Scholar 

  24. Caesar L, Cibulski SP, Canal CW et al (2019) The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J Gen Virol 100:1153–1164. https://doi.org/10.1099/jgv.0.001273

    Article  CAS  PubMed  Google Scholar 

  25. Caesar L, Lopes AMC, Radaeski JN et al (2021) Longitudinal survey reveals delayed effects of low gene expression on stingless bee colony health. J Apic Res 0:1–10. https://doi.org/10.1080/00218839.2021.1962123

    Article  Google Scholar 

  26. Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  27. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. Plos One 7:e40863. https://doi.org/10.1371/journal.pone.0040863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schloss PD (2020) Reintroducing mothur: 10 years later. Appl Environ Microbiol 86:e02343-e2419. https://doi.org/10.1128/AEM.02343-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  31. Abarenkov K Zirk A Piirmann T et al (2021) UNITE mothur release for eukaryotes. Version 10.05.2021. UNITE Community. https://doi.org/10.15156/BIO/1265914

  32. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kešnerová L, Mars RAT, Ellegaard KM et al (2017) Disentangling metabolic functions of bacteria in the honey bee gut. Plos Biol 15:e2003467. https://doi.org/10.1371/journal.pbio.2003467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng H, Powell JE, Steele MI et al (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Pnas 114:4775–4780. https://doi.org/10.1073/pnas.1701819114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Halwachs B, Madhusudhan N, Krause R et al (2017) Critical issues in mycobiota analysis. Front Microbiol 8:180. https://doi.org/10.3389/fmicb.2017.00180

    Article  PubMed  PubMed Central  Google Scholar 

  36. Echeverrigaray S, Scariot FJ, Foresti L et al (2021) Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. Int J Food Microbiol 347:109200. https://doi.org/10.1016/j.ijfoodmicro.2021.109200

    Article  CAS  PubMed  Google Scholar 

  37. Menezes C, Vollet-Neto A, Marsaioli AJ et al (2015) A Brazilian social bee must cultivate fungus to survive. Curr Biol 25:2851–2855. https://doi.org/10.1016/j.cub.2015.09.028

    Article  CAS  PubMed  Google Scholar 

  38. Paludo CR, Menezes C, Silva-Junior EA et al (2018) Stingless bee larvae require fungal steroid to pupate. Sci Rep 8:1122. https://doi.org/10.1038/s41598-018-19583-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paludo CR, Pishchany G, Andrade-Dominguez A et al (2019) Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. Plos One 14:e0219696. https://doi.org/10.1371/journal.pone.0219696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World 82:60–75. https://doi.org/10.1080/0005772X.2001.11099504

    Article  Google Scholar 

  41. Arien Y, Dag A, Yona S et al (2020) Effect of diet lipids and omega-6:3 ratio on honey bee brood development, adult survival and body composition. J Insect Physiol 124:104074. https://doi.org/10.1016/j.jinsphys.2020.104074

    Article  CAS  PubMed  Google Scholar 

  42. Arien Y, Dag A, Zarchin S et al (2015) Omega-3 deficiency impairs honey bee learning. Pnas 112:15761–15766. https://doi.org/10.1073/pnas.1517375112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Castelli L, Branchiccela B, Garrido M et al (2020) Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microb Ecol 80:908–919. https://doi.org/10.1007/s00248-020-01538-1

    Article  CAS  PubMed  Google Scholar 

  44. Toth AL, Robinson GE (2005) Worker nutrition and division of labour in honeybees. Anim Behav 69:427–435. https://doi.org/10.1016/j.anbehav.2004.03.017

    Article  Google Scholar 

  45. Kapheim KM Rao VD Yeoman CJ et al (2015) Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 10:. https://doi.org/10.1371/journal.pone.0123911

  46. Jones JC, Fruciano C, Marchant J et al (2018) The gut microbiome is associated with behavioural task in honey bees. Insect Soc 65:419–429. https://doi.org/10.1007/s00040-018-0624-9

    Article  CAS  Google Scholar 

  47. Herbert EWH Jr, Shimanuki H (1978) Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie 9:33–40. https://doi.org/10.1051/apido:19780103

    Article  Google Scholar 

  48. Carroll MJ, Brown N, Goodall C et al (2017) Honey bees preferentially consume freshly-stored pollen. Plos One 12:e0175933. https://doi.org/10.1371/journal.pone.0175933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Daisley BA, Trinder M, McDowell TW et al (2017) Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci Rep 7:2703. https://doi.org/10.1038/s41598-017-02806-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Branchiccela B, Castelli L, Corona M et al (2019) Impact of nutritional stress on the honeybee colony health. Sci Rep 9:10156. https://doi.org/10.1038/s41598-019-46453-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mendoza Y, Díaz S, Ramallo G, Invernizzi C (2012) Incidencia de Nosema ceranae durante el invierno en colonias de abejas melíferas retiradas de una forestación de Eucalyptus grandis. Veterinaria Montevideo 48:13–18

    Google Scholar 

  52. Moradi M, Ownagh A (2019) Antifungal effects of Lactobacillus casei, Lactobacillus acidophilus and Bifidobacterium bifidum on the Ascosphareaapis causative agent of honey bee Chalkbrood disease. J Vet Res 74:273–282. https://doi.org/10.22059/jvr.2019.217394.2533

    Article  Google Scholar 

  53. Miller DL Smith EA Newton ILG (2021) A bacterial symbiont protects honey bees from fungal disease. mBio. https://doi.org/10.1128/mBio.00503-21

  54. Hall MA, Brettell LE, Liu H et al (2021) Temporal changes in the microbiome of stingless bee foragers following colony relocation. FEMS Microbiology Ecology 97:fiaa236. https://doi.org/10.1093/femsec/fiaa236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Evald Gossler and Aroni Sattler for making their meliponaries available for our study, and to Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Associação ABELHA for supporting our work. We are indebted to three anonymous reviewers for their important contributions to our manuscript.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul FAPERGS PQG 19/2551–0001860-6, Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq/MCTIC/IBAMA/Associação ABELHA #400597/2018–7, and CNPq PQ #302121/2017–0. LC was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Karen Luisa Haag, Lílian Caesar, Victor Montenegro Marcelino, Dayana Rosalina de Sousa, and Marcos da Silveira Regueira Neto. The first draft of the manuscript was written by Karen Luisa Haag and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Karen Luisa Haag.

Ethics declarations

Ethics Approval

According to Brazilian law, samples were collected with permission ICMBIO MMA 66382–2 and the access to the genetic patrimony by the A1B8F1F SisGen register.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haag, K.L., Caesar, L., da Silveira Regueira-Neto, M. et al. Temporal Changes in Gut Microbiota Composition and Pollen Diet Associated with Colony Weakness of a Stingless Bee. Microb Ecol 85, 1514–1526 (2023). https://doi.org/10.1007/s00248-022-02027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02027-3

Keywords

Navigation