Skip to main content
Log in

Organic Matter Decomposition in River Ecosystems: Microbial Interactions Influenced by Total Nitrogen and Temperature in River Water

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbes contribute to the organic matter decomposition (OMD) in river ecosystems. This study considers two aspects of OMD in river ecosystems which have not been examined in scientific studies previously, and these are the microbial interactions in OMD and the influence of environmental factors on microbial interactions. Cotton strip (CS), as a substitute for organic matter, was introduced to Luanhe River Basin in China. The results of CS assay, microbial sequencing, and redundancy analysis (RDA) showed that CS selectively enriched bacterial and fungal groups related to cellulose decomposition, achieving cotton strip decomposition (CSD). Bacterial phylum Proteobacteria and fungal phyla Rozellomycota and Ascomycota were the dominant groups associated with CSD. Network analysis and Mantel test results indicated that bacteria and fungi on CS cooperatively formed an interaction network to achieve the CSD. In the network, modules 2 and 4 were significantly positively associated with CSD, which were considered as the key modules in this study. The key modules were mainly composed of phyla Proteobacteria and Ascomycota, indicating that microbes in key modules were the effective decomposers of CS. Although keystone taxa were not directly associated with CSD, they may regulate the genera in key modules to achieve the CSD, since some keystone taxa were linked with the microbial genera associated with CSD in the key modules. Total nitrogen (TN) and temperature in water were the dominant environmental factors positively influenced CSD. The key modules 2 and 4 were positively influenced by water temperature and TN in water, respectively, and two keystone taxa were positively associated with TN. This profoundly revealed that water temperature and TN influenced the OMD through acting on the keystone taxa and key modules in microbial interactions. The research findings help us to understand the microbial interactions influenced by environmental factors in OMD in river ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiegs SD, Costello DM, Isken MW, Woodward G, McIntyre PB, Gessner MO, Chauvet E, Griffiths NA, Flecker AS, Acuña V (2019) Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci Adv 5(1):eaav0486. https://doi.org/10.1126/sciadv.aav0486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu SD, Lu XX, Xia XH, Zhang SR, Ran LS, Yang XK, Liu T (2016) Dynamic biogeochemical controls on river pCO2 and recent changes under aggravating river impoundment: an example of the subtropical Yangtze River. Global Biogeochem Cy 30(6):880–897. https://doi.org/10.1002/2016GB005388

    Article  CAS  Google Scholar 

  3. Wang GQ, Xia XH, Liu SD, Zhang L, Zhang SB, Wang JF, Xi NN, Zhang QR (2021) Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions. Water Res 189:116654. https://doi.org/10.1016/j.watres.2020.116654

    Article  CAS  PubMed  Google Scholar 

  4. Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29(1):118–146. https://doi.org/10.1899/08-170.1

    Article  Google Scholar 

  5. Paumelle M, Donnadieu F, Joly M, Besse-Hoggan P, Artigas J (2021) Effects of sulfonamide antibiotics on aquatic microbial community composition and functions. Environ Int 156:106198. https://doi.org/10.1016/j.envint.2020.106198

    Article  CAS  Google Scholar 

  6. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol Indic 32:131–139. https://doi.org/10.1016/j.ecolind.2013.03.013

    Article  CAS  Google Scholar 

  7. Babur E, Dindaroğlu T, Riaz M, Uslu OS (2021) Seasonal variations in litter layers’ characteristics control microbial respiration and microbial carbon utilization under mature pine, cedar, and beech forest stands in the Eastern Mediterranean Karstic Ecosystems. Microb Ecol. https://doi.org/10.1007/s00248-021-01842-4

    Article  PubMed  Google Scholar 

  8. Colas F, Woodward G, Burdon FJ, Guérold F, Chauvet E, Cornut J, Cébron A, Clivot H, Danger M, Danner MC, Pagnout C, Tiegs SD (2019) Towards a simple global-standard bioassay for a key ecosystem process: organic-matter decomposition using cotton strips. Ecol Indic 106:105466. https://doi.org/10.1016/j.ecolind.2019.105466

    Article  CAS  Google Scholar 

  9. Webb JR, Pearce N, Painter KJ, Yates AG (2019) Hierarchical variation in cellulose decomposition in least-disturbed reference streams: a multi-season study using the cotton strip assay. Landscape Ecol 34:2353–2369. https://doi.org/10.1007/s10980-019-00893-w

    Article  Google Scholar 

  10. Pingram MA, Clapcott JE, Hamer MP, Atalah J, Özkundakci D (2020) Exploring temporal and spatial variation in cotton tensile-strength loss to assess the ecosystem health of non-wadeable rivers. Ecol Indic 108:105773. https://doi.org/10.1016/j.ecolind.2019.105773

    Article  Google Scholar 

  11. Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102. https://doi.org/10.2307/3545678

    Article  Google Scholar 

  12. Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569. https://doi.org/10.1890/0012-9658(2006)87[2559:IOBAFO]2.0.CO;2

    Article  PubMed  Google Scholar 

  13. Pesce S, Zoghlami O, Margoum C, Artigas J, Chaumot A, Foulquier A (2016) Combined effects of drought and the fungicide tebuconazole on aquatic leaf litter decomposition. Aquat Toxicol 173:120–131. https://doi.org/10.1016/j.aquatox.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  14. Balibrea A, Ferreira V, Balibrea C, Goncalves V, Raposeiro PM (2020) Contribution of macroinvertebrate shredders and aquatic hyphomycetes to litter decomposition in remote insular streams. Hydrobiologia 847:2337–2355. https://doi.org/10.1007/s10750-020-04259-1

    Article  Google Scholar 

  15. Pascoal C, Cassio F, Marcotegui A, Sanz B, Gomes P (2005) Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24:784–797. https://doi.org/10.1899/05-010.1

    Article  Google Scholar 

  16. Lecerf A, Chauvet E (2008) Diversity and functions of leaf-decaying fungi in human-altered streams. Freshwat Biol 53:1658–1672. https://doi.org/10.1111/j.1365-2427.2008.01986.x

    Article  CAS  Google Scholar 

  17. Piscart C, Genoel R, Dolédec S, Chauvet E, Marmonier P (2009) Effects of intense agricultural practices on heterotrophic processes in streams. Environ Pollut 157(3):1011–1018. https://doi.org/10.1016/j.envpol.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  18. Pastor A, Compson ZG, Dijkstra P, Riera JL, Martí E, Sabater F, Hungate BA, Marks JC (2014) Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. Oecologia 176:1111–1121. https://doi.org/10.1007/s00442-014-3063-y

    Article  PubMed  Google Scholar 

  19. Ferreira V, Raposeiro PM, Pereira A, Cruz AM, Costa AC, Graça MAS, Gonçalves V (2016) Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biol 61:783–799. https://doi.org/10.1111/fwb.12749

    Article  CAS  Google Scholar 

  20. Marks JC, Haden GA, Harrop BL, Reese EG, Keams JL, Watwood ME, Whitham TG (2010) Genetic and environmental controls of microbial communities on leaf litter in streams. Freshwater Biol 54(12):2616–2627. https://doi.org/10.1111/j.1365-2427.2009.02270.x

    Article  CAS  Google Scholar 

  21. Pereira A, Ferreira V (2021) Invasion of native riparian forests by acacia species affects in-stream litter decomposition and associated microbial decomposers. Microb Ecol 81:14–25. https://doi.org/10.1007/s00248-020-01552-3

    Article  CAS  PubMed  Google Scholar 

  22. Ma L, Zhang JB, Li ZQ, Xin XL, Guo ZB, Wang DZ, Li DC, Zhao BZ (2020) Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis. Appl Soil Ecol 148:103506. https://doi.org/10.1016/j.apsoil.2020.103506

    Article  Google Scholar 

  23. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1

    Article  CAS  PubMed  Google Scholar 

  24. Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E (2010) The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res 38(12):3857–3868. https://doi.org/10.1093/nar/gkq118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198. https://doi.org/10.1016/j.soilbio.2016.03.017

    Article  CAS  Google Scholar 

  26. Tao JM, Meng DL, Qin C, Liu XD, Liang YL, Xiao YH, Liu ZH, Gu YB, Li J, Yin HQ (2018) Integrated network analysis reveals the importance of microbial interactions for maize growth. Appl Microbiol Biot 102:3805–3818. https://doi.org/10.1007/s00253-018-8837-4

    Article  CAS  Google Scholar 

  27. Zheng W, Zhao ZY, Gong QL, Zhai BN, Li ZY (2018) Responses of fungal-bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol Biochem 125:54–63. https://doi.org/10.1016/j.soilbio.2018.06.029

    Article  CAS  Google Scholar 

  28. Miao LZ, Wang PF, Hou J, Yao Y, Liu ZL, Liu SQ, Li TF (2019) Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ 650:2395–2402. https://doi.org/10.1016/j.scitotenv.2018.09.378

    Article  CAS  PubMed  Google Scholar 

  29. Yuan Q, Hernández M, Dumont MG, Rui JP, Scavino AF, Conrad R (2018) Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biol Biochem 116:99–109. https://doi.org/10.1016/j.soilbio.2017.10.004

    Article  CAS  Google Scholar 

  30. Office FP (2019) Erratum: microbial community structures and important associations between soil nutrients and the responses of specific taxa to rice-frog cultivation. Front Microbiol 10:2206. https://doi.org/10.3389/fmicb.2019.02206

  31. Carballeira C, Villares R, Mata-Rivas B, Carballeira A (2020) The cotton-strip assay as an environmental surveillance tool for ecological integrity assessment of rivers affected by WWTP effluents. Water Res 169:115247. https://doi.org/10.1016/j.watres.2019.115247

    Article  CAS  PubMed  Google Scholar 

  32. Li YD, Kasahara T, Chiwa M, Fujimoto N (2020) Effects of dams and reservoirs on organic matter decomposition in forested mountain streams in western Japan. River Res Appl 36:257–1266. https://doi.org/10.1002/rra.3640

    Article  CAS  Google Scholar 

  33. Abril M, Munoz I, Casas-Ruiz JP, Gómez-Genera L, Barceló M, Oliva F, Menéndez M (2015) Effects of water flow regulation on ecosystem functioning in a Mediterranean river network assessed by wood decomposition. Sci Total Environ 517:57–65. https://doi.org/10.1016/j.scitotenv.2015.02.015

    Article  CAS  PubMed  Google Scholar 

  34. Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshwater Biol 4(4):343–368. https://doi.org/10.1111/j.1365-2427.1974.tb00103.x

    Article  Google Scholar 

  35. Ferreira V, Guérold F (2017) Leaf litter decomposition as a bioassessment tool of acidification effects in streams: evidence from a field study and meta-analysis. Ecol Indic 79:382–390. https://doi.org/10.1016/j.ecolind.2017.04.044

    Article  CAS  Google Scholar 

  36. Classen-Rodríguez L, Gutiérrez-Fonseca PE, Ramírez A (2019) Leaf litter decomposition and macroinvertebrate assemblages along an urban stream gradient in Puerto Rico. Biotropica 51:641–651. https://doi.org/10.1111/btp.12685

    Article  Google Scholar 

  37. Odum HT (1957) Trophic structure and productivity of Silver Springs. Florida Ecol Monogr 27(1):55–112. https://doi.org/10.2307/1948571

    Article  Google Scholar 

  38. Ross HH (1963) Stream communities and terrestrial biomes. Arch Hydrobiol 59:235–242

    Google Scholar 

  39. Tiegs SD, Langhans SD, Tockner K, Gessner MO (2007) Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. J N Am Benthol Soc 26(1):70–77. https://doi.org/10.1899/0887-3593(2007)26[70:CSAALS]2.0.CO;2

    Article  Google Scholar 

  40. Jabiol J, Colas F, Guérold F (2020) Cotton-strip assays: let’s move on to eco-friendly biomonitoring. Water Res 170:115295. https://doi.org/10.1016/j.watres.2019.115295

    Article  CAS  PubMed  Google Scholar 

  41. Lin QY, Zhang YX, Marrs R, Sekar R, Luo X, Wu NC (2020) Evaluating ecosystem functioning following river restoration: the role of hydromorphology, bacteria, and macroinvertebrates. Sci Total Environ 743:140583. https://doi.org/10.1016/j.scitotenv.2020.140583

    Article  CAS  PubMed  Google Scholar 

  42. Wang WG, Wei JD, Shao QX, Xing WQ, Yong B, Yu ZB, Jiao XY (2015) Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin. China Stoch Environ Res Risk Assess 29:1117–1133. https://doi.org/10.1007/s00477-014-1003-3

    Article  Google Scholar 

  43. Chen X, Han RG, Feng P, Wang YJ (2021) Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River basin, China. Nat Hazards. https://doi.org/10.1007/s11069-021-04992-3

  44. Zhao JH, Chen HL, Liang QH, Xia XL, Xu JR, Hoey T, Barrett B, Renaud FG, Bosher L, Zhou X (2021) Large-scale flood risk assessment under different development strategies: the Luanhe River Basin in China. Sustain Sci. https://doi.org/10.1007/s11625-021-01034-6

    Article  Google Scholar 

  45. Wang YX, Li JZ, Feng P, Chen FL (2015) Effects of large-scale climate patterns and human activities on hydrological drought: a case study in the Luanhe River basin. China Nat Hazards 76:1687–1710. https://doi.org/10.1007/s11069-014-1564-y

    Article  Google Scholar 

  46. Chadwick MA, Dobberfuhl DR, Benke AC, Huryn AD, Suberkropp K, Thiele JE (2006) Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecol Appl 16(5):1796–1807. https://doi.org/10.1890/1051-0761(2006)016[1796:UASEFB]2.0.CO;2

    Article  PubMed  Google Scholar 

  47. Rothenberger MB, Burkholder JAM, Brownie C (2009) Long-term effects of changing land use practices on surface water quality in a coastal river and lagoonal estuary. Environ Manage 44(3):505–523. https://doi.org/10.1007/s00267-009-9330-8

    Article  PubMed  Google Scholar 

  48. Jacobs SR, Breuer L, Butterbach-Bahl K, Pelster DE, Rufino MC (2017) Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Sci Total Environ 603–604:519–532. https://doi.org/10.1016/j.scitotenv.2017.06.100

    Article  CAS  PubMed  Google Scholar 

  49. Resmi SR, Patel PL, Timbadiya PV (2020) Impact of land use-land cover and climatic pattern on sediment yield of two contrasting sub-catchments in Upper Tapi Basin, India. J Geol Soc India 96:253–264. https://doi.org/10.1007/s12594-020-1545-6

    Article  CAS  Google Scholar 

  50. Ghazavi R, Imani R, Esmali ouri A, (2020) Development and application of a new index-overlay method to assess urban runoff vulnerability to contamination (evaluation in the Ardabil city, Iran). Arab J Geosci 13:1119. https://doi.org/10.1007/s12517-020-06121-z

    Article  Google Scholar 

  51. Board NEP (2002) Standard methods for the examination of water and wastewater (version 4). China Environmental Science Publish Press, Beijing

    Google Scholar 

  52. Chinese State Environment Protection Bureau (2002) Environmental quality standards for surface water (GB 3838–2002)

  53. Braak TCJF, Smilauer P (2012) Canoco reference manual and user’s guide: software for windows. Software for Canonical Community Ordination (Version 4.5). 1–500

  54. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8(7):e1002606. https://doi.org/10.1371/journal.pcbi.1002606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284. https://doi.org/10.1093/bioinformatics/btm554

    Article  CAS  PubMed  Google Scholar 

  56. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Proceedings of the Third International ICWSM Conference 361–362. https://doi.org/10.13140/2.1.1341.1520

  57. Guimera R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900. https://doi.org/10.1038/nature03288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. P Natl Acad Sci 104(50):19891–19896. https://doi.org/10.1073/pnas.0706375104

    Article  Google Scholar 

  59. Xiu W, Lloyd J, Guo HM, Dai W, Nixon S, Bassil NM, Ren C, Zhang CR, Ke TT, Polya D (2020) Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: potential importance of ammonium as an electron donor during arsenic mobilization. Environ Int 136:105489. https://doi.org/10.1016/j.envint.2020.105489

    Article  CAS  PubMed  Google Scholar 

  60. Krogh KBRM, Kastberg H, Jorgensen CI (2009) Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins. Enzyme Microb Tech 44(6–7):359–367. https://doi.org/10.1016/j.enzmictec.2009.02.007

    Article  CAS  Google Scholar 

  61. Maki ML, Idrees A, Leung KT, Qin WS (2012) Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. J Mol Microb Biotech 22(3):156–166. https://doi.org/10.1159/000341107

    Article  CAS  Google Scholar 

  62. Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A (2012) Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol 163(3):221–232. https://doi.org/10.1016/j.resmic.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  63. Koechli C, Campbell AN, Pepe-Ranney C, Buckley DH (2019) Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biol Biochem 130:150–158. https://doi.org/10.1016/j.soilbio.2018.12.013

    Article  CAS  Google Scholar 

  64. Song N, Xu HC, Yan ZS, Yang T, Wang CH, Jiang HL (2019) Improved lignin degradation through distinct microbial community in subsurface sediments of one eutrophic lake. Renew Energ 138:861–869. https://doi.org/10.1016/j.renene.2019.01.121

    Article  CAS  Google Scholar 

  65. Oh HN, Lee TK, Park JW, No JH, Kim D, Sul WJ (2017) Metagenomic SMRT Sequencing-Based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island. J Microbiol Biotechnol 27(9):1670–1680. https://doi.org/10.4014/jmb.1705.05008

    Article  CAS  PubMed  Google Scholar 

  66. Zang XY, Liu MT, Wang H, Fan YH, Zhang HC, Liu JW, Xing EL, Xu XH, Li HT (2017) The distribution of active β-glucosidase-producing microbial communities in composting. Can J Microbiol 63(12):998–1008. https://doi.org/10.1139/cjm-2017-0368

    Article  CAS  PubMed  Google Scholar 

  67. Zhan PF, Liu YS, Wang HC, Wang CL, Xia M, Wang N, Cui WZ, Xiao DR, Wang H (2021) Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. Sci Total Environ 753:142194. https://doi.org/10.1016/j.scitotenv.2020.142194

    Article  CAS  PubMed  Google Scholar 

  68. Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80(3):735–746. https://doi.org/10.1111/j.1574-6941.2012.01343.x

    Article  CAS  PubMed  Google Scholar 

  69. Ghignone S, Zampieri E, Tinti F, Torti V, Giacoma C, Mello A (2021) Fungal patterns from soils in Madagascar: an insight from Maromizaha forest (evergreen humid forest) to outside (deciduous forest). Microb Ecol. https://doi.org/10.1007/s00248-021-01887-5

    Article  PubMed  Google Scholar 

  70. Perkins AK, Rose AL, Grossart H, Rojas-Jimenez K, Prescott SKB, Oakes JM (2021) Oxic and anoxic organic polymer degradation potential of endophytic fungi from the marine macroalga, Ecklonia radiata. Front Microbiol 12:726138. https://doi.org/10.3389/fmicb.2021.726138

    Article  PubMed  PubMed Central  Google Scholar 

  71. Young D, Dollhofer V, Callaghan TM, Reitberger S, Lebuhn M, Benz JP (2018) Isolation, identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and two-phase biogas plants. Bioresource Technol 268:470–479. https://doi.org/10.1016/j.biortech.2018.07.103

    Article  CAS  Google Scholar 

  72. Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, Bacsik Z, Gorokhova E (2018) Evidence for selective bacterial community structuring on microplastics. Environ Microbiol 20(8):2796–2808. https://doi.org/10.1111/1462-2920.14120

    Article  CAS  PubMed  Google Scholar 

  73. Wu XJ, Pan J, Li M, Li Y, Mark B, Wang YY (2019) Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res 165:114979. https://doi.org/10.1016/j.watres.2019.114979

    Article  CAS  PubMed  Google Scholar 

  74. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) Response to comment on “a bacterium that degrades and assimilates poly(ethylene terephthalate).” Science 353(6301):759. https://doi.org/10.1126/science.aaf8625

    Article  CAS  PubMed  Google Scholar 

  75. Ling N, Zhu C, Xue C, Chen H, Duan YH, Peng C, Guo SW, Shen QR (2016) Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 99:137–149. https://doi.org/10.1016/j.soilbio.2016.05.005

    Article  CAS  Google Scholar 

  76. Wang S, Wang XB, Han XG, Deng Y (2018) Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. Glob Ecol Biogeogr 27:570–580. https://doi.org/10.1111/geb.12718

    Article  Google Scholar 

  77. Xue C, Penton CR, Zhu C, Chen H, Duan YH, Peng C, Guo SW, Ling N, Shen QR (2018) Alterations in soil fungal community composition and network assemblage structure by different long-term fertilization regimes are correlated to the soil ionome. Biol Fertil Soils 54:95–106. https://doi.org/10.1007/s00374-017-1241-x

    Article  Google Scholar 

  78. de Menezes AB, Prendergast-Miller MT, Richardson AE, Toscas P, Farrell M, Macdonald LM, Baker G, Wark T, Thrall PH (2015) Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ Microbiol 17(8):2677–2689. https://doi.org/10.1111/1462-2920.12559

    Article  CAS  PubMed  Google Scholar 

  79. Paul LR, Chapman BK, Chanway CP (2007) Nitrogen fixation associated with Suillus tomentosus tuberculate ectomycorrhizae on Pinus contorta var. latifolia. Ann Bot-london 99(6):1101–1109. https://doi.org/10.1093/aob/mcm061

    Article  CAS  Google Scholar 

  80. Bengtsson G (1992) Interactions between fungi, bacteria, and beech leaves in a stream microcosm. Oecologia 89:542–549. https://doi.org/10.1007/BF00317161

    Article  PubMed  Google Scholar 

  81. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285. https://doi.org/10.1038/nature02115

    Article  CAS  PubMed  Google Scholar 

  82. Shi SJ, Nuccio EE, Shi ZJ, He ZL, Zhou JZ, Firestone MK (2016) The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett 19:926–936. https://doi.org/10.1111/ele.12630

    Article  PubMed  Google Scholar 

  83. Coutinho FH, Meirelles PM, Moreira APB, Paranhos RP, Dutilh BE, Thompson FL (2015) Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review. PeerJ 3e:1008. https://doi.org/10.7717/peerj.1008

    Article  Google Scholar 

  84. Tamaki H, Tanaka Y, Matsuzawa H, Muramatsu M, Meng XY, Hanada S, Mori K, Kamagata Y (2011) Armatimonas rosea gen. nov. sp. nov of a novel bacterial phylum, Armatimonadetes phyl. nov. formally called the candidate phylum OP10. Int J Syst Evol Micr 61(6):1442–1447. https://doi.org/10.1099/ijs.0.025643-0

    Article  Google Scholar 

  85. Svenning MM, Hestnes AG, Wartiainen I, Stein LY, Klotz MG, Kalyuzhnaya MG, Spang A, Bringel F, Vuilleumier S, Lajus A, Médigue C, Bruce DC, Cheng JF, Goodwin L, Ivanova N, Han J, Han CS, Hauser L, Held B, Land ML, Lapidus A, Lucas S, Nolan M, Pitluck S, Woyke T (2011) Genome sequence of the arctic methanotroph Methylobacter tundripaludum SV96. J Bacteriol 193(22):6418–6419. https://doi.org/10.1128/JB.05380-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189. https://doi.org/10.1016/j.simyco.2015.12.002

    Article  PubMed  Google Scholar 

  87. Yan JF, Wang L, Hu Y, Tsang YF, Zhang YN, Wu JH, Fu XH, Sun Y (2018) Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319:194–203. https://doi.org/10.1016/j.geoderma.2018.01.009

    Article  CAS  Google Scholar 

  88. Zhang FY, Li L, Sun ML, Hu CT, Zhang ZG, Liu ZJ, Shao HF, Xi GL, Pan J (2019) Fungal community analyses of a pirogue from the tang dynasty in the national maritime museum of China. Appl Sci 9:4129. https://doi.org/10.3390/app9194129

    Article  CAS  Google Scholar 

  89. Li H, Jiang YJ, Wang SL, Chen LJ, Wen XC, Huang MX, Cheng XC, Cheng ZL, Tao L (2020) Bacterial networks mediate pentachlorophenol dechlorination across land-use types with citrate addition. J Hazard Mater 384:121295. https://doi.org/10.1016/j.jhazmat.2019.121295

    Article  CAS  PubMed  Google Scholar 

  90. He D, Shen WJ, Eberwein J, Zhao Q, Ren LJ, Wu QLL (2017) Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biol Biochem 115:499–510. https://doi.org/10.1016/j.soilbio.2017.09.023

    Article  CAS  Google Scholar 

  91. Deng Y, Zhang P, Qin Y, Tu Q, Yang Y, He Z, Schadt CW, Zhou J (2016) Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environ Microbiol 18(1):205–218. https://doi.org/10.1111/1462-2920.12981

    Article  CAS  PubMed  Google Scholar 

  92. Liang YT, Zhao HH, Deng Y, Zhou JZ, Li GH, Sun B (2016) Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes. Front Microbiol 7:60. https://doi.org/10.3389/fmicb.2016.00060

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jiang YJ, Li SZ, Li RP, Zhang J, Liu YH, Lv LF, Zhu H, Wu WL, Li WL (2017) Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol Biochem 109:145–155. https://doi.org/10.1016/j.soilbio.2017.02.010

    Article  CAS  Google Scholar 

  94. Banerjee S, Thrall PH, Bissett A, van der Heijden MGA, Richardson AE (2018) Linking microbial co-occurrences to soil ecological processes across a woodland-grassland ecotone. Ecol Evol 8(16):8217–8230. https://doi.org/10.1002/ece3.4346

    Article  PubMed  PubMed Central  Google Scholar 

  95. Herren CM, McMahon KD (2018) Keystone taxa predict compositional change in microbial communities. Environ Microbiol 20(6):2207–2217. https://doi.org/10.1111/1462-2920.14257

    Article  PubMed  Google Scholar 

  96. Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622. https://doi.org/10.1128/mr.59.4.604-622.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. de Menezes AB, Richardson AE, Thrall PH (2017) Linking fungal-bacterial co-occurrences to soil ecosystem function. Curr Opin Microbiol 37:135–141. https://doi.org/10.1016/j.mib.2017.06.006

    Article  PubMed  Google Scholar 

  98. Wan XL, Gao Q, Zhao JS, Feng JJ, van Nostrand JD, Yang YF, Zhou JZ (2020) Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biol Biochem 142:107696. https://doi.org/10.1016/j.soilbio.2019.107696

    Article  CAS  Google Scholar 

  99. Tu QC, Yan QY, Deng Y, Michaletz ST, Buzzarde V, Weiser MD, Waide R, Ning DL, Wu LY, He ZL, Zhou JZ (2020) Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol Biochem 148:107897. https://doi.org/10.1016/j.soilbio.2020.107897

    Article  CAS  Google Scholar 

  100. Lin Q, Vrieze JD, Li JB, Li XZ (2016) Temperature affects microbial abundance, activity and interactions in anaerobic digestion. Bioresource Technol 209:228–236. https://doi.org/10.1016/j.biortech.2016.02.132

    Article  CAS  Google Scholar 

  101. Meng LW, Wang JC, Li XK, Yu YN, Zhu YN (2021) Microbial community and molecular ecological network in the EGSB reactor treating antibiotic wastewater: response to environmental factors. Ecotox Environ Safe 208:111669. https://doi.org/10.1016/j.ecoenv.2020.111669

    Article  CAS  Google Scholar 

  102. Xiao R, Ni BJ, Liu ST, Lu HJ (2021) Impacts of organics on the microbial ecology of wastewater anammox processes: recent advances and meta-analysis. Water Res 191:116817. https://doi.org/10.1016/j.watres.2021.116817

    Article  CAS  PubMed  Google Scholar 

  103. Burdon FJ, Bai YH, Reyes M, Tamminen M, Staudacher P, Mangold S, Singer H, Joss A, Tiegs SD, Jokela J, Eggen RIL, Stamm C (2020) Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. Glob Change Biol 26(11):6363–6382. https://doi.org/10.1111/gcb.15302

    Article  Google Scholar 

  104. Zhang J, Li SY, Dong RZ, Jiang CS, Ni MF (2019) Influences of land use metrics at multi-spatial scales on seasonal water quality: a case study of river systems in the Three Gorges Reservoir Area. China J Clean Prod 206:76–85. https://doi.org/10.1016/j.jclepro.2018.09.179

    Article  CAS  Google Scholar 

  105. McLaren JS, Royer TV, Kirk RWV, Muradian ML (2019) Management and limnology interact to drive water temperature patterns in a Middle Rockies River-Reservoir System. J Am Water Resour As 55(5):1323–1334. https://doi.org/10.1111/1752-1688.12782

    Article  Google Scholar 

  106. Alger M, Lane BA, Neilson BT (2021) Combined influences of irrigation diversions and associated subsurface return flows on river temperature in a semi-arid region. Hydrol Process 35(8):e14283. https://doi.org/10.1002/hyp.14283

    Article  Google Scholar 

Download references

Funding

The authors would like to express their appreciation to the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant 2018ZX07111005) and the Science and Technology Development Program of Jilin Province (20200801071GH) for the support.

Author information

Authors and Affiliations

Authors

Contributions

Yibo Liu: Conceptualization, methodology, software, visualization, formal analysis, data curation, investigation, writing—original draft. Yanping Shen, Cheng Cheng, Weilin Yuan: Investigation. Baiyu Zhang, Yixin Zhang and Ping Guo: Investigation; resources; writing, review and editing; supervision; project administration.

Corresponding author

Correspondence to Ping Guo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 56924 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, B., Zhang, Y. et al. Organic Matter Decomposition in River Ecosystems: Microbial Interactions Influenced by Total Nitrogen and Temperature in River Water. Microb Ecol 85, 1236–1252 (2023). https://doi.org/10.1007/s00248-022-02013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02013-9

Keywords

Navigation