Skip to main content

Advertisement

Log in

Local-Scale Damming Impact on the Planktonic Bacterial and Eukaryotic Assemblages in the upper Yangtze River

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Dam construction and impoundment cause discontinuities in the natural biophysical gradients in rivers. These discontinuities may alter distinctive habitats and different microbial community assembly mechanisms upstream and downstream of dams, which reflect the potential impacts of damming on riverine aquatic ecosystems. In this study, we investigated the planktonic microbial assemblages of three large dams in the upper Yangtze River by using high-throughput sequencing. The results revealed that the alpha diversity indexes increased downstream of the dams. In addition, more eukaryotic ASVs solely occurred downstream of the dams, which indicated that a large proportion of eukaryotes appeared downstream of the dams. The nonmetric multidimensional scaling analysis indicated that there was no obvious geographic clustering of the planktonic microbial assemblages among the different locations or among the different dams. However, the dam barriers changed dam-related variables (maximum dam height and water level) and local environmental variables (water temperature, DOC, etc.) that could possibly affect the assembly of the planktonic microbial communities that are closest to the dams. A co-occurrence network analysis demonstrated that the keystone taxa of the planktonic bacteria and eukaryotes decreased downstream of the dams. In particular, the keystone taxa of the eukaryotes disappeared downstream of the dams. The robustness analysis indicated that the natural connectivity of the microbial networks decreased more rapidly upstream of the dams, and the downstream eukaryotic network was more stable. In conclusion, damming has a greater impact on planktonic eukaryotes than on bacteria in near-dam areas, and planktonic microbial assemblages were more susceptible to the environmental changes. Our study provides a better understanding of the ecological effects of river damming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data in the manuscript are accessible and can be requested from the corresponding author.

References

  1. Yang N, Li Y, Zhang WL, Lin L, Qian B, Wang LF, Niu LH, Zhang HJ (2020) Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web. Water Res 170:115351. https://doi.org/10.1016/j.watres.2019.115351

    Article  CAS  PubMed  Google Scholar 

  2. Chen W, Olden JD (2017) Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat Commun 8:2158. https://doi.org/10.1038/s41467-017-02226-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maavara T, Chen QW, Van Meter K, Brown LE, Zhang JY, Ni JR, Zarfl C (2020) River dam impacts on biogeochemical cycling. Nat Rev Environ Earth 1:103–116. https://doi.org/10.1038/s43017-019-0019-0

    Article  Google Scholar 

  4. Vannote RL, Minshall G, Cummins K, Sedell J, Gushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137. https://doi.org/10.1139/F80-017

    Article  Google Scholar 

  5. Winton RS, Calamita E, Wehrli B (2019) Reviews and syntheses: dams, water quality and tropical reservoir stratification. Biogeosciences 16:1657–1671. https://doi.org/10.5194/bg-16-1657-2019

    Article  CAS  Google Scholar 

  6. Baxter R (1977) Environmental effects of dams and impoundments. Annu Rev Ecol S 8:255–283. https://doi.org/10.1146/annurev.es.08.110177.001351

    Article  Google Scholar 

  7. Ward JV, Stanford JA (1983) The serial discontinuity concept of lotic ecosystems. In: Fontaine T D, Bartell SM. (eds.). Dynamics of lotic ecosystems. Ann Arbor Scientific Publishers pp. 29–42

  8. Stanford JA, Ward JV (2001) Revisiting the serial discontinuity concept. Regul Rivers Res Manage 17:303–310. https://doi.org/10.1002/rrr.659

    Article  Google Scholar 

  9. Xu Y, Guo XJ, Dan Y, Yang ZJ, Ma J, Liu DF, Xu YQ (2021) Impact of cascade reservoirs on continuity of river water temperature: a temperature trend hypothesis in river. Hydrol Process 35:e13994. https://doi.org/10.1002/hyp.13994

    Article  Google Scholar 

  10. Ellis L, Jones N (2013) Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environ Rev 21:136–148. https://doi.org/10.1139/er-2012-0064

    Article  Google Scholar 

  11. Clark DR, Ferguson RMW, Harris DN, Matthews NKJ, Prentice HJ, Randall KC, Randell L, Warren SL, Dumbrell AJ (2018) Streams of data from drops of water: 21st century molecular microbial ecology. WIREs Water 5:e1280. https://doi.org/10.1002/wat2.1280

    Article  Google Scholar 

  12. Ruiz-González C, Proia L, Ferrera I, Gasol JM, Sabater S (2013) Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol Ecol 84:316–331. https://doi.org/10.1111/1574-6941.12063

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Wang PF, Wang C, Wang X, Miao LZ, Liu S, Yuan QS (2018) Bacterial communities in riparian sediments: a large-scale longitudinal distribution pattern and response to dam construction. Front Microbiol 9:999. https://doi.org/10.3389/fmicb.2018.00999

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu LH, Zou X, Yang JX, Xiao Y, Wang YC, Guo JS, Li Z (2020) Biogeography of eukaryotic plankton communities along the upper Yangtze River: the potential impact of cascade dams and reservoirs. J Hydrol 590:125495. https://doi.org/10.1016/j.jhydrol.2020.125495

    Article  CAS  Google Scholar 

  15. Liu T, Zhang AN, Wang JW, Liu SF, Jiang XT, Dang CY, Ma T, Liu ST, Chen Q, Xie SG, Zhang T, Ni JR (2018) Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome 6:16. https://doi.org/10.1186/s40168-017-0388-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu LM, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9:2068–2077. https://doi.org/10.1038/ismej.2015.29

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang PF, Wang X, Wang C, Miao LZ, Hou J, Yuan QS (2017) Shift in bacterioplankton diversity and structure: influence of anthropogenic disturbances along the Yarlung Tsangpo River on the Tibetan Plateau. China Sci Rep 7:12529. https://doi.org/10.1038/s41598-017-12893-4

    Article  CAS  PubMed  Google Scholar 

  18. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. https://doi.org/10.1128/MMBR.00028-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nelson CE, Carlson CA (2011) Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment. PLoS ONE 6:e18320. https://doi.org/10.1371/journal.pone.0018320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horňák K, Mašín M, Jezbera J, Bettarel Y, Nedoma J, Sime-Ngando T, Šimek K (2005) Effects of decreased resource availability, protozoan grazing and viral impact on a structure of bacterioplankton assemblage in a canyon-shaped reservoir. FEMS Microbiol Ecol 52:315–327. https://doi.org/10.1016/j.femsec.2004.11.013

    Article  CAS  PubMed  Google Scholar 

  21. Yang ML, Shi J, Wang BL, Xiao J, Li WZ, Liu CQ (2020) Control of hydraulic load on bacterioplankton diversity in cascade hydropower reservoirs, southwest China. Microb Ecol 80:537–545. https://doi.org/10.1007/s00248-020-01523-8

    Article  CAS  PubMed  Google Scholar 

  22. Lindström ES, Bergström AK (2004) Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnol Oceanogr 49:125–136. https://doi.org/10.4319/lo.2004.49.1.0125

    Article  Google Scholar 

  23. Zhou L, Chen WY, Sun JJ, Liu L, Huang XD (2020) Spatial variation in bacterioplankton communities in the Pearl River, South China: impacts of land use and physicochemical factors. Microorganisms 8:814. https://doi.org/10.3390/microorganisms8060814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, Griffiths RI (2015) Catchment-scale biogeography of riverine bacterioplankton. ISME J 9:516–526. https://doi.org/10.1038/ismej.2014.166

    Article  CAS  PubMed  Google Scholar 

  25. Savio D, Sinclair L, Ijaz UZ, Parajka J, Reischer GH, Stadler P, Blaschke AP, Blöschl G, Mach RL, Kirschner AKT, Andreas HF, Alexander E (2015) Bacterial diversity along a 2600 km river continuum. Environ Microbiol 17:4994–5007. https://doi.org/10.1111/1462-2920.12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Payne JT, Millar JJ, Jackson CR, Ochs CA (2017) Patterns of variation in diversity of the Mississippi River microbiome over 1,300 kilometers. PLoS ONE 12:e0174890. https://doi.org/10.1371/journal.pone.0174890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson CR, Millar JJ, Payne JT, Ochs CA (2014) Free-living and particle-associated bacterioplankton in large rivers of the Mississippi River basin demonstrate biogeographic patterns. Appl Environ Microbiol 80:7186–7195. https://doi.org/10.1128/aem.01844-14

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Ye F, Wu SJ, Wu JP, Yan J, Xu KQ, Hong YG (2020) Biogeographic pattern of bacterioplanktonic community and potential function in the Yangtze River: roles of abundant and rare taxa. Sci Total Environ 747:141335. https://doi.org/10.1016/j.scitotenv.2020.141335

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Wang PF, Wang C, Wang X, Miao LZ, Liu S, Yuan QS, Sun SH (2020) Distinct assembly mechanisms underlie similar biogeographic patterns of rare and abundant bacterioplankton in cascade reservoirs of a large river. Front Microbiol 11:158. https://doi.org/10.1111/1462-2920.14993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Wang C, Wang PF, Chen J, Miao LZ, Feng T, Yuan QS, Liu S (2018) How bacterioplankton community can go with cascade damming in the highly regulated Lancang-Mekong River Basin. Mol Ecol 27:4444–4458. https://doi.org/10.1111/mec.14870

    Article  PubMed  Google Scholar 

  31. Lu LL, Tang Q, Li H, Li Z (2022) Damming river shapes distinct patterns and processes of planktonic bacterial and microeukaryotic communities. Environ Microbiol. https://doi.org/10.1111/1462-2920.1587

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mikhailov IS, Zakharova YR, Bukin YS, Galachyants YP, Petrova DP, Sakirko MV, Likhoshway YV (2019) Co-occurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom. Microb Ecol 77:96–109. https://doi.org/10.1007/s00248-018-1212-2

    Article  PubMed  Google Scholar 

  33. Steele JA, Countway PD, Xia L et al (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425. https://doi.org/10.1038/ismej.2011.24

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Vries FT, Griffiths RI, Bailey M et al (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 9:3033. https://doi.org/10.1038/s41467-018-05516-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. https://doi.org/10.1038/nrmicro2832

    Article  CAS  PubMed  Google Scholar 

  36. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219. https://doi.org/10.3389/fmicb.2014.00219

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qin Y, Tang Q, Lu LH, Wang YC, Izaguirre I, Li Z (2021) Changes in planktonic and sediment bacterial communities under the highly regulated dam in the mid-part of the Three Gorges Reservoir. Appl Microbiol Biotechnol 105:839–852. https://doi.org/10.1007/s00253-020-11047-3

    Article  CAS  PubMed  Google Scholar 

  38. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1

    Article  CAS  PubMed  Google Scholar 

  39. Zhu LL, Xu QX, Dong BJ, Qin LL (2021) Study on the effect and influencing factors of sand discharge of Xiluodu Reservoir in the Lower Jinsha River. Advances in Water Science (Chinese Edition) 32:544–555. https://doi.org/10.14042/j.cnki.32.1309.2021.04.006

    Article  CAS  Google Scholar 

  40. Li Z, Zhang ZY, Xiao Y, Guo JS, Wu SJ, Liu J (2014) Spatio-temporal variations of carbon dioxide and its gross emission regulated by artificial operation in a typical hydropower reservoir in China. Environ Monit Assess 186:3023–3039. https://doi.org/10.1007/s10661-013-3598-0

    Article  CAS  PubMed  Google Scholar 

  41. Qin Y, Zhang YY, Li Z, Ma JR (2018) CH4 fluxes during the algal bloom in the Pengxi River. Environment Science (Chinese Edition) 39:1578–1588. https://doi.org/10.13227/j.hjkx.201706044

    Article  Google Scholar 

  42. Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Methods 70:565–569. https://doi.org/10.1016/j.mimet.2007.06.013

    Article  CAS  PubMed  Google Scholar 

  43. Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x

    Article  CAS  PubMed  Google Scholar 

  44. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  PubMed  PubMed Central  Google Scholar 

  46. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu J, Mauricio B, Tan YJ, Deng HZ (2010) Natural connectivity of complex networks. Chin Phys Lett 27:078902. https://doi.org/10.1088/0256-307x/27/7/078902

    Article  Google Scholar 

  49. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382. https://doi.org/10.1038/35019019

    Article  CAS  PubMed  Google Scholar 

  50. Iyer S, Killingback T, Sundaram B, Wang Z (2013) Attack robustness and centrality of complex networks. PLoS ONE 8:e59613. https://doi.org/10.1371/journal.pone.0059613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu MH, Chen SY, Chen JW et al (2021) Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. PNAS 118:e2025321118. https://doi.org/10.1073/pnas.2025321118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan K, Weisenhorn P, Gilbert JA, Shi Y, Bai Y, Chu HY (2018) Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol Biochem 121:185–192. https://doi.org/10.1016/j.soilbio.2018.03.017

    Article  CAS  Google Scholar 

  53. Liu JW, Fu BB, Yang HM, He BY, Zhang XH (2015) Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Front Microbiol 6:64. https://doi.org/10.3389/fmicb.2015.00064

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ghylin TW, Garcia SL, Moya F et al (2014) Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J 8:2503–2516. https://doi.org/10.1038/ismej.2014.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gong J, Shi F, Ma B, Dong J, Pachiadaki M, Zhang XL, Edgcomb VP (2015) Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environ Microbiol 17:3722–3737. https://doi.org/10.1111/1462-2920.12763

    Article  CAS  PubMed  Google Scholar 

  56. David GM, Moreira D, Reboul G, Annenkova NV, Galindo LJ, Bertolino P, López-Archilla AI, Jardillier L, López-García P (2020) Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environ Microbiol 23:1436–1451. https://doi.org/10.1111/1462-2920.15346

    Article  CAS  PubMed  Google Scholar 

  57. Timpe K, Kaplan D (2017) The changing hydrology of a dammed Amazon. Sci Adv 3:e1700611. https://doi.org/10.1126/sciadv.1700611

    Article  PubMed  PubMed Central  Google Scholar 

  58. Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132. https://doi.org/10.1590/s1519-69842008000500019

    Article  CAS  PubMed  Google Scholar 

  59. Isabwe A, Yang JR, Wang YM, Liu LM, Chen HH, Yang J (2018) Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river. Sci Total Environ 630:658–667. https://doi.org/10.1016/j.scitotenv.2018.02.210

    Article  CAS  PubMed  Google Scholar 

  60. Kruk C, Huszar VLM, Peeters ETHM, Bonilla S, Costa L, Lürling M, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshwater Biol 55:614–627. https://doi.org/10.1111/j.1365-2427.2009.02298.x

    Article  Google Scholar 

  61. Zeglin LH (2015) Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00454

  62. Allgaier M, Brückner S, Jaspers E, Grossart HP (2007) Intra- and inter-lake variability of free-living and particle-associated Actinobacteria communities. Environ Microbiol 9:2728–2741. https://doi.org/10.1111/j.1462-2920.2007.01385.x

    Article  CAS  PubMed  Google Scholar 

  63. Pernthaler J, Posch T, Simek K, Vrba J, Pernthaler A, Glöckner FO, Nübel U, Psenner R, Amann R (2001) Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67:2145–2155. https://doi.org/10.1128/AEM.67.5.2145-2155.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Holmfeldt K, Dziallas C, Titelman J, Pohlmann K, Grossart HP, Riemann L (2009) Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea. Environ Microbiol 11:2042–2054. https://doi.org/10.1111/j.1462-2920.2009.01925.x

    Article  CAS  PubMed  Google Scholar 

  65. Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308. https://doi.org/10.1023/A:1020591307260

    Article  CAS  PubMed  Google Scholar 

  66. Wang JT, Fan HB, He XJ, Zhang FB, Xiao JB, Yan ZL, Feng JJ, Li R (2021) Response of bacterial communities to variation in water quality and physicochemical conditions in a river-reservoir system. Glob Ecol Conserv 27:e01541. https://doi.org/10.1016/j.gecco.2021.e01541

    Article  Google Scholar 

  67. Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350:663–666. https://doi.org/10.1126/science.aad2602

    Article  CAS  PubMed  Google Scholar 

  68. Golovlev EL (2001) Ecological strategy of bacteria: specific nature of the problem. Microbiology 70:379–383. https://doi.org/10.1023/A:1010476507199

    Article  CAS  Google Scholar 

  69. Porter SS, Rice KJ (2013) Trade-offs, spatial heterogeneity, and the maintenance of microbial diversity. Evolution 67:599–608. https://doi.org/10.1111/j.1558-5646.2012.01788.x

    Article  PubMed  Google Scholar 

  70. Litchman E, Edwards KF, Klausmeier CA (2015) Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00254

  71. Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80. https://doi.org/10.1046/j.1461-0248.2003.00551.x

    Article  Google Scholar 

  72. Weinbauer MG, Höfle MG (1998) Distribution and life strategies of two bacterial populations in a eutrophic lake. Appl Environ Microbiol 64:3776–3783. https://doi.org/10.1128/aem.64.10.3776-3783.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Portillo MC, Anderson SP, Fierer N (2012) Temporal variability in the diversity and composition of stream bacterioplankton communities. Environ Microbiol 14:2417–2428. https://doi.org/10.1111/j.1462-2920.2012.02785.x

    Article  PubMed  Google Scholar 

  74. Crump BC, Peterson BJ, Raymond PA, Amon RMW, Rinehart A, McClelland JW, Holmes RM (2009) Circumpolar synchrony in big river bacterioplankton. PNAS 106:21208–21212. https://doi.org/10.1073/pnas.0906149106

    Article  PubMed  PubMed Central  Google Scholar 

  75. Böckelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170. https://doi.org/10.1016/S0168-6496(00)00056-8

    Article  Google Scholar 

  76. Mansour I, Heppell CM, Ryo M, Rillig MC (2018) Application of the microbial community coalescence concept to riverine networks. Biol Rev 93:1832–1845. https://doi.org/10.1111/brv.12422

    Article  PubMed  Google Scholar 

  77. Allan JD, Castillo MM (2007) Lotic communities. Stream ecology: structure and function of running waters, 2nd edn. Springer, Netherlands, pp 229–254

    Chapter  Google Scholar 

  78. MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York

    Google Scholar 

  79. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  80. Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. PNAS 100:8916–8920. https://doi.org/10.1073/pnas.1033107100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stegen JC, Lin X, Fredrickson JK et al (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang J, Shen J, Wu Y et al (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321. https://doi.org/10.1038/ismej.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tee HS, Waite D, Lear G et al (2021) Microbial river-to-sea continuum: gradients in benthic and planktonic diversity, osmoregulation and nutrient cycling. Microbiome 9(1):190. https://doi.org/10.1186/s40168-021-01145-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Niño-García JP, Ruiz-González C, del Giorgio PA (2016) Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J 10(7):1755–1766. https://doi.org/10.1038/ismej.2015.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu L, Chen H, Liu M et al (2019) Response of the eukaryotic plankton community to the cyanobacterial biomass cycle over 6 years in two subtropical reservoirs. ISME J 13(9):2196–2208. https://doi.org/10.1038/s41396-019-0417-9

    Article  PubMed  PubMed Central  Google Scholar 

  86. Laren PE, Field D, Gilbert JA (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods 9(6):621–625. https://doi.org/10.1038/nmeth.1975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Wei Tan, Qi Zhang, and Xing Chen, who participated in the field sampling campaigns.

Funding

This study is supported by The National Natural Science Foundation of China (Project No. 51861125204 and 52039006) and the Chongqing Bureau of Science and Technology (Project No. cstc2020jscx-msxmX0121 and No. cstc2020jcyj-jqX0010). Dr. Lu, and Dr. Li were also supported by the “Light of West” Program funded by the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

H. Li: methodology, writing-original draft. Q. Tang: review and editing, data analysis. R. Li: methodology, review, and editing. Z. Li: conceptualization, review, and editing, funding acquisition. L. Lu: investigation, experiment, writing—original draft, review, and editing.

Corresponding author

Correspondence to Lunhui Lu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.04 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Z., Tang, Q. et al. Local-Scale Damming Impact on the Planktonic Bacterial and Eukaryotic Assemblages in the upper Yangtze River. Microb Ecol 85, 1323–1337 (2023). https://doi.org/10.1007/s00248-022-02012-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02012-w

Keywords

Navigation