Skip to main content
Log in

Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The fall armyworm Spodoptera frugiperda is an important polyphagous agricultural pest in the Western Hemisphere and currently invasive to countries of the Eastern Hemisphere. This species has two host-adapted strains named “rice” and “corn” strains. Our goal was to identify the occurrence of core members in the gut bacterial community of fall armyworm larvae from distinct geographical distribution and/or host strain. We used next-generation sequencing to identify the microbial communities of S. frugiperda from corn fields in Brazil, Colombia, Mexico, Panama, Paraguay, and Peru, and rice fields from Panama. The larval gut microbiota of S. frugiperda larvae did not differ between the host strains nor was it affected by the geographical distribution of the populations investigated. Our findings provide additional support for Enterococcus and Pseudomonas as core members of the bacterial community associated with the larval gut of S. frugiperda, regardless of the site of collection or strain. Further investigations are required for a deeper understanding of the nature of this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Upon paper acceptance, the data will be archived and the data regarding the deposited database and information such as access numbers will be provided for all manuscript data.

Code Availability

Not applicable.

References

  1. Hammer TJ, Sanders JG, Fierer N (2019) Not all animals need a microbiome. FEMS Microbiology Letters 366: fnz117.

  2. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E (2011) Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes 2:190–192

    Article  PubMed  Google Scholar 

  4. Frago E, Dicke M, Godfray HCJ (2012) Insect symbionts as hidden players in insect–plant interactions. Trends in Ecology & Evolution 27: 705–711. 5.Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47

    Google Scholar 

  5. Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37:699–735

    Article  CAS  PubMed  Google Scholar 

  6. Azambuja P, Feder D, Garcia ES (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107:89–96

    Article  CAS  PubMed  Google Scholar 

  7. Cavichiolli de Oliveira N, Cônsoli FL (2020) Beyond host regulation: changes in gut microbiome of permissive and non-permissive hosts following parasitization by the wasp Cotesia flavipes. FEMS Microbiology Ecology 96(2): fiz206.  https://doi.org/10.1093/femsec/fiz206

  8. Kikuchi Y, Hosokawa T, Fukatsu T (2011) An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J 5:446–460

    Article  PubMed  Google Scholar 

  9. Gomes AFF, Omoto C, Cônsoli FL (2020) Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J Pest Sci 93:833–851

    Article  Google Scholar 

  10. Chen B, Zhang N, Xie S, Zhang X, He J, Muhammad A, Sun C, Lu X, Shao Y (2020) Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environment International 143: 105886.

  11. Almeida LGd, Moraes LABd, Trigo JR, Omoto C, Cônsoli FL (2017) The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PloS one 12: e0174754.

  12. Chu C-C, Spencer JL, Curzi MJ, Zavala JA, Seufferheld MJ (2013) Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc Natl Acad Sci USA 110:11917–11922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PloS biology 4: e337.

  14. Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108:19288–19292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13. https://doi.org/10.1186/s40168-017-0236-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salcedo-Porras N, Umaña-Diaz C, Bitencourt RdOB, Lowenberger C (2020) The role of bacterial symbionts in Triatomines: an evolutionary perspective. Microorganisms 8:1438. https://doi.org/10.3390/microorganisms8091438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N (2017) Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci USA 114:9641–9646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Appel HM (2017) The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. Insect-plant interactions. CRC Press, pp. 209–224

  19. Dow JA (1984) Extremely high pH in biological systems: a model for carbonate transport. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 246:R633–R636

    Article  CAS  Google Scholar 

  20. Gayatri Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PloS one 7: e30768.

  21. Mazumdar T, Teh BS, Murali A, Schmidt-Heck W, Vogel H, Schlenker Y, Boland W (2021) Transcriptomics reveal the survival strategies of Enterococcus mundtii in the gut of Spodoptera littoralis. J Chem Ecol 47:227–241

    Article  CAS  PubMed  Google Scholar 

  22. Teh B-S, Apel J, Shao Y, Boland W (2016) Colonization of the intestinal tract of the polyphagous pest Spodoptera littoralis with the GFP-tagged indigenous gut bacterium Enterococcus mundtii. Front Microbiol 7:928

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mason CJ, St. Clair A, Peiffer M, Gomez E, Jones AG, Felton GW, Hoover K (2020) Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PloS one 15: e0229848.

  24. Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W (2017) Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chemical Biolology 24:66–75

    Article  CAS  Google Scholar 

  25. Shao Y, Arias-Cordero E, Guo H, Bartram S, Boland W (2014) In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PloS one 9: e85948.

  26. Xia X, Lan B, Tao X, Lin J, You M (2020) Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Front Microbiol 11:1492

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moya A, Pereto J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9:218–229

    Article  CAS  PubMed  Google Scholar 

  28. Douglas AE (2011) Lessons from studying insect symbioses. Cell Host Microbe 10:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kostic AD, Howitt MR, Garrett WS (2013) Exploring host–microbiota interactions in animal models and humans. Genes Dev 27:701–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scoble MJ (1992) The Lepidoptera. Form, function and diversity. Oxford University Press

  31. McCaffery AR (1998) Resistance to insecticides in heliothine Lepidoptera: a global view. Philos Trans R Soc Lond B Biol Sci 353:1735–1750

    Article  CAS  PubMed Central  Google Scholar 

  32. Riegler M (2018) Insect threats to food security. Science 361:846

    Article  CAS  PubMed  Google Scholar 

  33. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS one 11: e0165632.

  34. Johnson SJ (1987) Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the Western Hemisphere. Int J Trop Insect Sci 8:543–549

    Article  Google Scholar 

  35. Otim MH, Tay WT, Walsh TK, Kanyesigye D, Adumo S, Abongosi J, Ochen S, Sserumaga J, Alibu S, Abalo G, Asea G, Agona A (2018) Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PloS one 13: e0194571.

  36. Padhee AK, Prasanna BM (2019) The emerging threat of Fall Armyworm in India. Indian Farming 69:51–54

    Google Scholar 

  37. Piggott MP, Tadle FPJ, Patel S, Gomez KC, Thistleton B (2021) Corn-strain or rice-strain? Detection of fall armyworm, Spodoptera frugiperda (JE Smith )(Lepidoptera: Noctuidae), in northern Australia. International Journal of Tropical Insect Science: 1–9.

  38. Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SVd, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26:286–300

    Article  Google Scholar 

  39. Adamczyk JJ Jr, Holloway JW, Leonard BR, Graves JB (1997) Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. Journal of Cotton Science 1:21–28

    CAS  Google Scholar 

  40. Cruz-Esteban S, Rojas JC, Sánchez-Guillén D, Cruz-López L, Malo EA (2018) Geographic variation in pheromone component ratio and antennal responses, but not in attraction, to sex pheromones among fall armyworm populations infesting corn in Mexico. J Pest Sci 91:973–983

    Article  Google Scholar 

  41. Lima ER, McNeil JN (2009) Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology 19:29–36

    Article  CAS  Google Scholar 

  42. Schöfl G, Heckel DG, Groot AT (2009) Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: evidence for differing modes of inheritance. J Evol Biol 22:1447–1459

    Article  PubMed  Google Scholar 

  43. Veenstra KH, Pashley DP, Ottea JA (1995) Host-plant adaptation in fall armyworm host strains: comparison of food consumption, utilization, and detoxication enzyme activities. Ann Entomol Soc Am 88:80–91

    Article  CAS  Google Scholar 

  44. Pashley DP, Hardy TN, Hammond AM (1995) Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann Entomol Soc Am 88:748–755

    Article  Google Scholar 

  45. Orsucci M, Mone Y, Audiot P, Gimenez S, Nhim S, Nait-Saidi R, Frayssinet M, Dumont G, Boudon J-P, Vabre M (2020) Transcriptional differences between the two host strains of Spodoptera frugiperda (Lepidoptera: Noctuidae). bioRxiv: 263186.

  46. Ingber DA, Mason CE, Flexner L (2018) Cry1 Bt susceptibilities of fall armyworm (Lepidoptera: Noctuidae) host strains. J Econ Entomol 111:361–368

    Article  CAS  PubMed  Google Scholar 

  47. Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury J-M, Duvic B, Hilliou F, Durand N, Montagné N, Darboux I, Kuwar S, Chertemps T, Siaussat D, Bretschneider A, Moné Y, Ahn SJ, Hänniger S, Grenet ASG, Neunemann D, Maumus F, Luyten I, Labadie K, Xu W, Koutroumpa F, Escoubas JM, Llopis A, Maïbèche-Coisne M, Salasc F, Tomar A, Anderson AR, Khan SA, Dumas P, Orsucci M, Guy J, Belser C, Alberti A, Noel B, Couloux A, Mercier J, Nidelet S, Dubois E, Liu NY, Boulogne I, Mirabeau O, Le Goff G, Gordon K, Oakeshott J, Consoli FL, Volkoff AN, Fescemyer HW, Marden JH, Luthe DS, Herrero S, Heckel DG, Wincker P, Kergoat GJ, Amselem J, Quesneville H, Groot AT, Jacquin-Joly E, Nègre N, Lemaitre C, Legeai F, dÁlençon E, Fournier P, (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 7:11816

    Article  PubMed  PubMed Central  Google Scholar 

  48. Silva-Brandão KL, Horikoshi RJ, Bernardi D, Omoto C, Figueira A, Brandão MM (2017) Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genomics 18:792

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kondidie DB (2011) Genetic variability and gene flow of the fall armyworm Spodoptera frugiperda (JE Smith) in the western hemisphere and susceptibility to insecticides. PhD Dissertation. Department of Entomology, University of Nebraska, Lincoln, USA.

  50. Clark PL, Molina-Ochoa J, Martinelli S, Skoda SR, Isenhour DJ, Lee DJ, Krumm JT, Foster JE (2007) Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. J Insect Sci 7(1):5. https://doi.org/10.1673/031.007.0501

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nagoshi RN, Rosas-García NM, Meagher RL, Fleischer SJ, Westbrook JK, Sappington TW, Hay-Roe M, Thomas JMG, Murúa GM (2015) Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J Econ Entomol 108:135–144

    Article  CAS  PubMed  Google Scholar 

  52. Tay WT, Rane R, Padovan A, Walsh T, Elfekih S, Downes S, Nam K, d’Alençon E, Zhang J, Wu Y, Nègre N, Kunz D, Kriticos DJ, Czepak C, Otim M, Gordon KHJ (2020) Whole genome sequencing of global Spodoptera frugiperda populations: evidence for complex, multiple introductions across the Old World. bioRxiv: 2020.2006.2012.147660. https://doi.org/10.1101/2020.06.12.147660

  53. Silva-Brandão KL, Peruchi A, Seraphim N, Murad NF, Carvalho RA, Farias JR, Omoto C, Cônsoli FL, Figueira A, Brandão MM (2018) Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae). PloS one 13: e0197378.

  54. Montezano DG, Specht A, Sosa-Gomez DR, Roque-Specht VF, de Paula-Moraes SV, Peterson JA, Hunt TE (2019) Developmental parameters of Spodoptera frugiperda (Lepidoptera: Noctuidae) immature stages under controlled and standardized conditions. Journal of Agricultural Science 11(8).  https://doi.org/10.5539/jas.v11n8p76

  55. Sambrook J (2001) Molecular cloning: a laboratory manual/Joseph Sambrook, David W. Russell. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

  56. Levy HC, Garcia-Maruniak A, Maruniak JE (2002) Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Florida Entomologist 85:186–191

    Article  CAS  Google Scholar 

  57. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17(1):10–12

    Article  Google Scholar 

  58. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mirarab S, Nguyen N, Warnow T (2012) SEPP: SATé-enabled phylogenetic placement. Biocomputing 2012:247–258

    Google Scholar 

  61. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15:799–821. https://doi.org/10.1038/s41596-019-0264-1

    Article  CAS  PubMed  Google Scholar 

  64. Team RC (2020) R: a language and environment for statistical computing. Version 4.0. 2 (Taking Off Again). R Foundation for Statistical Computing, Vienna, Austria.

  65. Arbizu PM (2019) pairwiseAdonis: pairwise multilevel comparison using Adonis. 2017.

  66. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  67. Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for microbial metagenomics. PloS one 7: e30126.

  68. Correa-Galeote D, Bedmar EJ, Arone GJ (2018) Maize endophytic bacterial diversity as affected by soil cultivation history. Front Microbiol 9:484

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Yan H, Zhang X, Zhang R, Li M, Xu T, Yang F, Zheng H, Zhao J (2020) Investigating the endophytic bacterial diversity and community structures in seeds of genetically related maize (Zea mays L.) genotypes. 3 Biotech 10: 27.

  70. Meliani A, Bensoltane A, Mederbel K (2012) Microbial diversity and abundance in soil: related to plant and soil type. American Journal of Plant Nutrition and Fertilization Technology 2:10–18

    Article  Google Scholar 

  71. Martínez-Solís M, Collado MC, Herrero S (2020) Influence of diet, sex, and viral infections on the gut microbiota composition of Spodoptera exigua caterpillars. Front Microbiol 11:753

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y, Crisci E, Pennarun S, Dhorne-Pollet S, Foury A, Moisan M-P (2020) Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci Rep 10(1):1–19

    Article  Google Scholar 

  73. Hisada T, Endoh K, Kuriki K (2015) Inter- and intra-individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese. Arch Microbiol 197:919–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE (2018) Bacterial symbionts in lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol 9:556

    Article  PubMed  PubMed Central  Google Scholar 

  75. Obadia B, Güvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, Ludington WB (2017) Probabilistic invasion underlies natural gut microbiome stability. Curr Biol 27:1999-2006.e1998. https://doi.org/10.1016/j.cub.2017.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jones AG, Mason CJ, Felton GW, Hoover K (2019) Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 9(1):1–11

    Article  Google Scholar 

  77. Gichuhi J, Sevgan S, Khamis F, Van den Berg J, du Plessis H, Ekesi S, Herren JK (2020) Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ 8: e8701.

  78. Ugwu JA, Liu M, Sun H, Asiegbu FO (2020) Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. J Appl Entomol 144:764–776

    Article  CAS  Google Scholar 

  79. Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL (2015) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618

    Article  CAS  PubMed  Google Scholar 

  80. Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, Sa T (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbiol 103:2664–2675

    Article  CAS  PubMed  Google Scholar 

  81. Chen B, Teh B-S, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6:29505. https://doi.org/10.1038/srep29505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rozadilla G, Cabrera NA, Virla EG, Greco NM, McCarthy CB (2020) Gut microbiota of Spodoptera frugiperda (J.E. Smith) larvae as revealed by metatranscriptomic analysis. J Appl Entomol 144:351–363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the São Paulo Research Foundation (FAPESP) (process 2011/50877-0) and the Ministry of Science, Technology and Innovation (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq: process 403851/2013-0 and 462140-2014/8) for the grant provided to the senior author. The HPC resources made available by the Superintendence of Information Technology of the University of São Paulo. We also thank FAPESP for the PhD student fellowship (2017/24377-7) provided to the first author. We also would like to thank our collaborators from Panama, Peru, Colombia, Paraguay, and Brazil who helped us with the field collection of larval samples. This manuscript is one of the chapters of the PhD Thesis of the first author.

Funding

This research was financed by the São Paulo Research Foundation (FAPESP) (process 2011/50877–0) and the Ministry of Science, Technology and Innovation (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq: process 403851/2013–0 and 462140–2014/8).

Author information

Authors and Affiliations

Authors

Contributions

Nathalia Cavichiolli de Oliveira and Fernando Luís Cônsoli conceived the study and designed the experiment. NCO processed the samples. NCO and Pedro Augusto da Pos Rodrigues conducted the bioinformatics. FLC secured funds for the project. NCO wrote the first draft of the manuscript and PAPR and FLC revised and edited the initial draft. NCO, PAPR, and FLC approved the final version for publication.

Corresponding author

Correspondence to Fernando L. Cônsoli.

Ethics declarations

Ethics Approval

Not applicable

Additional Declarations for Articles in Life Science Journals That Report the Results of Studies Involving Humans and/or Animals

Not applicable

Consent to Participate

All authors agree with the participation in this manuscript.

Consent for Publication

All authors agree with the manuscript submission to Microbial Ecology Journal.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 118 KB)

Supplementary file2 (DOCX 121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, N.C., Rodrigues, P.A.P. & Cônsoli, F.L. Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. Microb Ecol 85, 1552–1563 (2023). https://doi.org/10.1007/s00248-022-02008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02008-6

Keywords

Navigation