Skip to main content
Log in

Eco-physiological Responses of Aquatic Fungi to Three Global Change Stressors Highlight the Importance of Intraspecific Trait Variability

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Anthropogenic change at a global scale is affecting life on Earth with impacts on freshwaters. Aquatic hyphomycetes are fungi that drive organic matter decomposition in freshwaters and mediate energy transfer to higher trophic levels. Intraspecific trait variability affects ecological processes and can account for species adaptations to environmental change. To ascertain how aquatic hyphomycetes respond to global change related stressors, we selected 20 strains (7 species), based on their co-occurrence in streams and phylogenetic relatedness. We measured fungal growth rates at different temperatures (7 levels), nutrient concentrations (6 levels) and medium moisture (6 levels). Our results indicate that all stressors affected fungal growth, and responses to nutrient enrichment and moisture were strain specific. Fungal responses to the stressors were not explained by their phylogenetic relatedness. In the absence of stressors, interspecific diversity best explained the variance in fungal traits, while the increase in the stress gradient increased the importance of intraspecific diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

DNA sequences are available at GenBank. Accession numbers listed in Supplementary material, Table S1. The datasets generated during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. IPCC (2018) Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, et al (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, pp 32

  2. Whitehead PG, Wilby RL, Battarbee RW et al (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54:101–123. https://doi.org/10.1623/hysj.54.1.101

    Article  Google Scholar 

  3. Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475. https://doi.org/10.1038/461472a

    Article  CAS  PubMed  Google Scholar 

  4. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. https://doi.org/10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  5. Gessner, MO, Gulis V, Kuehn KA, et al (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek CP & Druzhinina IS (eds) The Mycota, Environmental and Microbial Ralationships, 2nd edn. Springer, Berlin, Heidelberg, pp 301–324. https://doi.org/10.1007/978-3-540-71840-6_17

  6. Brock TD, Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms, 10th edn. Prentice-Hall, Upper Saddle River, USA

  7. Chauvet E, Suberkropp K (1998) Temperature and sporulation of aquatic hyphomycetes. Appl Environ Microbiol 64:1522–1525. https://doi.org/10.1128/AEM.64.4.1522-1525.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sridhar KR, Bärlocher F (1993) Effect of temperature on growth and survival of five aquatic hyphomycetes. Sydowia 45:377–387

    Google Scholar 

  9. Sabater S, Tockner K (2009) Effects of hydrologic alterations on the ecological quality of river ecosystems. In: Sabater S, Barceló D (eds) Water scarcity in the Mediterranean, The Handbook of Environmental Chemistry, 8 edn. Springer, Berlin, Heidelberg, pp 15–39. https://doi.org/10.1007/698_2009_24

  10. Mora-Gómez J, Duarte S, Cássio F et al (2018) Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Sci Total Environ 621:486–496. https://doi.org/10.1016/j.scitotenv.2017.11.055

    Article  CAS  PubMed  Google Scholar 

  11. van Horn DJ, Sinsabaugh RL, Takacs-Vesbach CD et al (2011) Response of heterotrophic stream biofilm communities to a gradient of resources. Aquat Microb Ecol 64:149–161. https://doi.org/10.3354/ame01515

    Article  Google Scholar 

  12. Nelson CE, Bennett DM, Cardinale BJ (2013) Consistency and sensitivity of stream periphyton community structural and functional responses to nutrient enrichment. Ecol Appl 23:159–173. https://doi.org/10.1890/12-0295.1

    Article  PubMed  Google Scholar 

  13. Fernandes I, Seena S, Pascoal C, Cássio F (2014) Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshw Biol 59:2390–2399. https://doi.org/10.1111/fwb.12445

    Article  CAS  Google Scholar 

  14. Pascoal C, Pinho M, Cássio F, Gomes P (2003) Assessing structural and functional ecosystem condition using leaf breakdown: studies on a polluted river. Freshw Biol 48:2033–2044. https://doi.org/10.1046/j.1365-2427.2003.01130.x

    Article  Google Scholar 

  15. Pereira A, Geraldes P, Lima-Fernandes E et al (2016) Structural and functional measures of leaf-associated invertebrates and fungi as predictors of stream eutrophication. Ecol Ind 69:648–656. https://doi.org/10.1016/j.ecolind.2016.05.017

    Article  CAS  Google Scholar 

  16. Pascoal C, Fernandes I, Seena S, et al (2021) Linking microbial decomposer diversity to plant litter decomposition and associated processes in streams. In: Swan CM, Boyero L, Canhoto C (eds) The ecology of plant litter decomposition in stream ecosystems, 1st edn. Springer International Publishing, Cham, Switzerland, pp 163–192 https://doi.org/10.1007/978-3-030-72854-0_9

  17. Gessner MO, Swan CM, Dang CK et al (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. https://doi.org/10.1016/j.tree.2010.01.010

    Article  PubMed  Google Scholar 

  18. Fernandes I, Pascoal C, Cássio F (2011) Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 166:1019–1028. https://doi.org/10.1007/s00442-011-1930-3

    Article  PubMed  Google Scholar 

  19. de Bello F et al (2021) Handbook of trait-based ecology: from theory to R tools. Cambridge University Press. https://doi.org/10.1017/9781108628426

    Article  Google Scholar 

  20. Schoener TW (2011) The newest synthesis: understanding ecological dynamics. Science 331:426–429. https://doi.org/10.1126/science.1193954

    Article  CAS  PubMed  Google Scholar 

  21. Maynard DS, Bradford MA, Covey KR et al (2019) Consistent trade-offs in fungal trait expression across broad spatial scales. Nat Microbiol 4:846–853. https://doi.org/10.1038/s41564-019-0361-5

    Article  CAS  PubMed  Google Scholar 

  22. Martini S, Larras F, Boyé A et al (2021) Functional trait-based approaches as a common framework for aquatic ecologists. Limnol Oceanogr 66:965–994. https://doi.org/10.1002/lno.11655

    Article  Google Scholar 

  23. Baudy P, Zubrod JP, Konschak M et al (2021) Environmentally relevant fungicide levels modify fungal community composition and interactions but not functioning. Environ Pollut 285:117234. https://doi.org/10.1016/j.envpol.2021.117234

    Article  CAS  PubMed  Google Scholar 

  24. Crowther TW (2020) The emergence of trait-based approaches in fungal ecology. Fungal Ecol 46:100946. https://doi.org/10.1016/j.funeco.2020.100946

    Article  Google Scholar 

  25. Aguilar-Trigueros CA, Hempel S, Powell JR et al (2015) Branching out: towards a trait-based understanding of fungal ecology. Fungal Biol Rev 29:34–41. https://doi.org/10.1016/j.fbr.2015.03.001

    Article  Google Scholar 

  26. Nguyen NH, Song Z, Bates ST et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  27. Asthana A, Shearer CA (1990) Antagonistic activity of Pseudohalonectria and Ophioceras. Mycologia 82:554–561. https://doi.org/10.1080/00275514.1990.12025928

    Article  Google Scholar 

  28. Mafole TC, Solhaug KA, Minibayeva FV, Beckett RP (2019) Occurrence and possible roles of melanic pigments in lichenized ascomycetes. Fungal Biol Rev 33:159–165. https://doi.org/10.1016/j.fbr.2018.10.002

    Article  Google Scholar 

  29. Seena S, Pascoal C, Marvanová L, Cássio F (2010) DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Diversity 44:77–87. https://doi.org/10.1007/s13225-010-0056-y

    Article  Google Scholar 

  30. Fox J, Weisberg S (2019) An R Companion to Applied Regression, 3rd edn. Sage, Thousand Oaks CA

  31. Bodenhofer U, Bonatesta E, Horejs-Kainrath C, Hochreiter S (2015) msa: a R package for multiple sequence alignment. Bioinformatics 31:3997–3999. https://doi.org/10.1093/bioinformatics/btv494

    Article  CAS  PubMed  Google Scholar 

  32. Charif D, Lobry J (2007) SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman H, Vendruscolo M (eds) Structural approaches to sequence evolution: Molecules, networks, populations, series Biological and Medical Physics, Biomedical Engineering, 1st edn. Springer Verlag, New York, pp 207–232

  33. Schliep K, Potts JA, Morrison AD, Grimm WG (2017) Intertwining phylogenetic trees and networks. Methods Ecol Evol 8:1212–1220. https://doi.org/10.7287/peerj.preprints.2054v1

    Article  Google Scholar 

  34. Oksanen J, Blanchet FG, Michael Friendly, et al (2020) Vegan: Community Ecology Package. The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 9 Nov 2021

  35. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542. https://doi.org/10.1093/bioinformatics/btl117

    Article  CAS  PubMed  Google Scholar 

  36. Galili T (2015) Dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 31:3718–3720. https://doi.org/10.1093/bioinformatics/btv428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weller HI, Westneat MW (2019) Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7:e6398. https://doi.org/10.7717/peerj.6398

    Article  PubMed  PubMed Central  Google Scholar 

  38. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  39. Padfield D, O’Sullivan H, Pawar S (2021) rTPC and nls.multstart: a new pipeline to fit thermal performance curves in R. Methods Ecol Evol 12:1138–1143. https://doi.org/10.1111/2041-210X.13585

    Article  Google Scholar 

  40. Akaike H (2011) Akaike’s Information Criterion. In: Lovric M. (ed) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_110

  41. Thioulouse J, Dray S, Dufour A et al (2018) Multivariate analysis of ecological data with ade4. Springer. https://doi.org/10.1007/978-1-4939-8850-1

    Article  Google Scholar 

  42. Taudiere A, Violle C (2016) cati: an R package using functional traits to detect and quantify multi-level community assembly processes. Ecography 39:699–708. https://doi.org/10.1111/ecog.01433

    Article  Google Scholar 

  43. Suberkropp K (1984) Effect of temperature on seasonal occurrence of aquatic hyphomycetes. T Brit Mycol Soc 82:53–62. https://doi.org/10.1016/S0007-1536(84)80211-9

    Article  Google Scholar 

  44. Arsuffi TL, Suberkropp K (1984) Leaf processing capabilities of aquatic hyphomycetes interspecific differences and influence on shredder feeding preferences. Oikos 42(144–154):3544786

    Google Scholar 

  45. Gulis V, Suberkropp K (2003) Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microb Ecol 45:11–19. https://doi.org/10.1007/s00248-002-1032-1

    Article  CAS  PubMed  Google Scholar 

  46. Milberg P, Lamont BB, Pérez-Fernández MA (1999) Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecol 145:125–132. https://doi.org/10.1023/A:1009817804815

    Article  Google Scholar 

  47. Pascoal C, Cássio F, Marvanová L (2005) Anthropogenic stress may affect aquatic hyphomycete diversity more than leaf decomposition in a low-order stream. Arch Hydrobiol 162:481–496. https://doi.org/10.1127/0003-9136/2005/0162-0481

    Article  Google Scholar 

  48. MedECC (2020) Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. In: Cramer W, Guiot J, Marini K (eds) First Mediterranean Assessment Report. Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, pp 632. https://doi.org/10.5281/zenodo.4768833

  49. Alster CJ, Allison SD, Johnson NG et al (2021) Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME Communications 1:43. https://doi.org/10.1038/s43705-021-00045-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vidal C, Fargues J, Lacey LA (1997) Intraspecific variability of Paecilomyces fumosoroseus: effect of temperature on vegetative growth. J Invertebr Pathol 70:18–26. https://doi.org/10.1006/jipa.1997.4658

    Article  Google Scholar 

  51. Quainoo S, Seena S, Graça MAS (2016) Copper tolerant ecotypes of Heliscus lugdunensis differ in their ecological function and growth. Sci Total Environ 544:168–174. https://doi.org/10.1016/j.scitotenv.2015.11.119

    Article  CAS  PubMed  Google Scholar 

  52. Herrando-Pérez S, Ferri-Yáñez F, Monasterio C et al (2019) Intraspecific variation in lizard heat tolerance alters estimates of climate impact. J Anim Ecol 88:247–257. https://doi.org/10.1111/1365-2656.12914

    Article  PubMed  Google Scholar 

  53. Jung V, Albert CH, Violle C et al (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J Ecol 102:45–53. https://doi.org/10.1111/1365-2745.12177

    Article  Google Scholar 

  54. Cai Y, Xue Q, Xu J et al (2016) Widespread natural intraspecific variation in tissue stoichiometry of two freshwater molluscs: effect of nutrient enrichment. Ecol Ind 66:583–591. https://doi.org/10.1016/j.ecolind.2016.02.022

    Article  CAS  Google Scholar 

  55. Andrade R, Pascoal C, Cássio F (2016) Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition-a microcosm experiment. FEMS Microbiol Ecol 92:1–8. https://doi.org/10.1093/femsec/fiw102

    Article  CAS  Google Scholar 

  56. Seena S, Casotti C, Cornut J (2020) Inter- and intraspecific functional variability of aquatic fungal decomposers and freshwater ecosystem processes. Sci Total Environ 707:135570. https://doi.org/10.1016/j.scitotenv.2019.135570

    Article  CAS  PubMed  Google Scholar 

  57. des Roches S, Post DM, Turley NE, et al (2018) The ecological importance of intraspecific variation. Nature Ecology and Evolution 2:57–64. https://doi.org/10.1038/s41559-017-0402-5

    Article  PubMed  Google Scholar 

  58. Duarte S, Bärlocher F, Pascoal C, Cássio F (2016) Biogeography of aquatic hyphomycetes: current knowledge and future perspectives. Fungal Ecol 19:169–181. https://doi.org/10.1016/j.funeco.2015.06.002

    Article  Google Scholar 

  59. IPCC (2021) Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, et al (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press. In Press

  60. Morrill JC, Bales RC, Conklin MH (2005) Estimating stream temperature from air temperature: implications for future water quality. J Environ Eng 131:139–146. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)

    Article  CAS  Google Scholar 

  61. van Vliet MTH, Franssen WHP, Yearsley JR et al (2013) Global river discharge and water temperature under climate change. Glob Environ Chang 23:450–464. https://doi.org/10.1016/j.gloenvcha.2012.11.002

    Article  Google Scholar 

  62. Tudor D, Robinson SC, Cooper PA (2012) The influence of moisture content variation on fungal pigment formation in spalted wood. AMB Express 2:1–10. https://doi.org/10.1186/2191-0855-2-69

    Article  Google Scholar 

  63. Suhr KI, Haasum I, Steenstrup LD, Larsen TO (2002) Factors affecting growth and pigmentation of Penicillium caseifulvum. J Dairy Sci 85:2786–2794. https://doi.org/10.3168/jds.S0022-0302(02)74365-8

    Article  CAS  PubMed  Google Scholar 

  64. Méndez A, Pérez C, Montañéz JC et al (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B 12:961–968. https://doi.org/10.1631/jzus.B1100039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (“The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impact of heat on the organic world”). Meteorol Z 1:215–226. https://doi.org/10.1127/0941-2948/2011/105

    Article  Google Scholar 

Download references

Funding

The study was supported by the project STREAMECO: Biodiversity and ecosystem functioning under climate change: from the gene to the stream (PTDC/CTA-AMB/31245/2017), funded by the Portuguese Foundation for Science and Technology (FCT) and the European Regional Development Fund (ERDF) through the COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). This work was also supported by the “Contrato-Programa” (UIDB/04050/2020) funded by national funds through the FCT I.P. Diana Graça was supported by FCT (SFRH/BD/140761/2018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. DG conducted the experiments. DG and IF performed the data analysis. DG wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Diana Graça.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4012 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graça, D., Fernandes, I., Cássio, F. et al. Eco-physiological Responses of Aquatic Fungi to Three Global Change Stressors Highlight the Importance of Intraspecific Trait Variability. Microb Ecol 85, 1215–1225 (2023). https://doi.org/10.1007/s00248-022-02007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02007-7

Keywords

Navigation