Skip to main content
Log in

Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bathyarchaeota are believed to have roles in the carbon cycle in marine systems. However, the ecological knowledge of Bathyarchaeota is limited in peatland ecosystems. Here, we investigated the vertical distribution of Bathyarchaeota community structure using quantitative PCR and high-throughput sequencing technology of ribosomal 16S rRNA gene integrated with detailed chemical profiling in the Dajiuhu Peatland, central China. Eight archaeal phyla were observed in peat samples, which mainly composed of Bathyarchaeota with a mean relative abundance about 88%, followed by Thaumarchaeota (9%). Bathyarchaeota were further split into 17 subgroups, and some subgroups showed habitat specificity to peat horizons with distinct lithological and physicochemical properties, for example, Bathy-6 and Bathy-15 had preference for the acrotelm, Bathy-5b, Bathy-16, and Bathy-19 were enriched in the catotelm, Bathy-5a, Bathy-8, and Bathy-11 were specific for the clay horizon. This spatial distribution pattern of archaeal communities along peat profile was mainly influenced by water content as indicated by RDA ordination and permutational MANOVA, whereas organic matter content exclusively affected Bathyarchaeota distribution along the peat profile significantly. The abundance of archaeal 16S rRNA genes ranged from 105 to 107 copies per gram dry sediment, and the highest archaeal biomass was observed in the periodically oxic mesotelm horizon with more dynamic archaeal interaction relationship as indicated by the network analysis. Bathyarchaeota dominated the archaeal interaction network with 82% nodes, 96% edges, and 71% keystone species. Our results provide an overview of the archaeal population, community structure, and relationship with environmental factors that affect the vertical distribution of archaeal communities and emphasize the ecology of bathyarchaeotal lineages in terrestrial peatland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source of variation in Aithison distance. In b, color parts denoted significant factors at 0.05 level for explanation of variance resource, and unknown part represented the residuals from permutational MANOVA analysis

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Sequence data obtained from this study were deposited in the National Omics Data Encyclopedia (NODE) under the accession number of OEP001037.

Code Availability

Not applicable.

References

  1. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the last glacial maximum. Geophys Res Lett 37:L13402. https://doi.org/10.1029/2010GL043584

    Article  CAS  Google Scholar 

  2. Limpens J, Heijmans MMPD, Berendse F (2006) The nitrogen cycle in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 195–230

    Chapter  Google Scholar 

  3. Menon S, Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva L, Dias P, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kindom, pp 499–587

    Google Scholar 

  4. Tveit A, Schwacke R, Svenning MM, Urich T (2013) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7:299–311. https://doi.org/10.1038/ismej.2012.99

    Article  CAS  PubMed  Google Scholar 

  5. Cadillo-Quiroz H, Bräuer S, Yashiro E, Sun C, Yavitt J, Zinder S (2006) Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8:1428–1440. https://doi.org/10.1111/j.1462-2920.2006.01036.x

    Article  CAS  PubMed  Google Scholar 

  6. Akiyama M, Shimizu S, Sakai T, Ioka S, Ishijima Y, Naganuma T (2011) Spatiotemporal variations in the abundances of the prokaryotic rRNA genes, pmoA, and mcrA in the deep layers of a peat bog in Sarobetsu-genya wetland, Japan. Limnology 12:1–9. https://doi.org/10.1007/s10201-010-0315-3

    Article  Google Scholar 

  7. Zhou L, Liu X, Dong X (2014) Methanospirillum psychrodurum sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 64:638–641. https://doi.org/10.1099/ijs.0.057299-0

    Article  CAS  PubMed  Google Scholar 

  8. Kotsyurbenko O, Friedrich M, Simankova M, Nozhevnikova A, Golyshin P, Timmis K, Conrad R (2007) Shift from acetoclastic to H2-dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73:2344–2348. https://doi.org/10.1128/AEM.02413-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cadillo-Quiroz H, Bräuer SL, Goodson N, Yavitt JB, Zinder SH (2014) Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64:1473–1480. https://doi.org/10.1099/ijs.0.059964-0

    Article  CAS  PubMed  Google Scholar 

  10. Löscher C, Kock A, Koenneke M, LaRoche J, Bange HW, Schmitz RA (2012) Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 9:2419–2429. https://doi.org/10.5194/bg-9-2419-2012

    Article  CAS  Google Scholar 

  11. Siljanen HM, Alves RJ, Ronkainen JG, Lamprecht RE, Bhattarai HR, Bagnoud A, Marushchak ME, Martikainen PJ, Schleper C, Biasi C (2019) Archaeal nitrification is a key driver of high nitrous oxide emissions from arctic peatlands. Soil Biol Biochem 137:107539. https://doi.org/10.1016/j.soilbio.2019.107539

    Article  CAS  Google Scholar 

  12. Xiang X, Wang R, Wang H, Gong L, Man B, Xu Y (2017) Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci Rep 7:45028. https://doi.org/10.1038/srep45028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bai Y, Wang J, Zhan Z, Guan L, Jin L, Zheng G, Huang Z (2018) The variation of microbial communities in a depth profile of peat in the Gahai Lake Wetland Natural Conservation area. Geomicrobiol J 35:484–490. https://doi.org/10.1080/01490451.2017.1392651

    Article  Google Scholar 

  14. Wen X, Unger V, Jurasinski G, Koebsch F, Horn F, Rehder G, Sachs T, Zak D, Lischeid G, Knorr K-H (2018) Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions. Biogeosciences 15:6519–6536. https://doi.org/10.5194/bg-15-6519-2018

    Article  CAS  Google Scholar 

  15. Meng J, Xu J, Qin D, He Y, Xiao X, Wang F (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659. https://doi.org/10.1038/ismej.2013.174

    Article  CAS  PubMed  Google Scholar 

  16. Yu T, Wu W, Liang W, Lever MA, Hinrichs K-U, Wang F (2018) Growth of sedimentary Bathyarchaeota on lignin as an energy source. PNAS 115:6022–6027. https://doi.org/10.1073/pnas.1718854115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schellekens J, Buurman P, Kuyper TW (2012) Source and transformations of lignin in Carex-dominated peat. Soil Biol Biochem 53:32–42. https://doi.org/10.1016/j.soilbio.2012.04.030

    Article  CAS  Google Scholar 

  18. Chen Y, Li S, Yu Z, Chen Y, Mi T, Zhen Y (2020) Characteristics of the Bathyarchaeota community in surface sediments from the southern Yellow Sea and northern East China sea. Estuarine, Coastal Shelf Sci 235:106595. https://doi.org/10.1016/j.ecss.2020.106595

  19. Fillol M, Sànchez-Melsió A, Gich F, Borrego MC (2015) Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats. FEMS Microbiol Ecol 91:fiv020. https://doi.org/10.1093/femsec/fiv020

  20. Pan J, Zhou Z, Béjà O, Cai M, Yang Y, Liu Y, Gu JD, Li M (2020) Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota. Microbiome 8:43. https://doi.org/10.1186/s40168-020-00820-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zou D, Pan J, Liu Z, Zhang C, Liu H, Li M (2020) The distribution of Bathyarchaeota in surface sediments of the Pearl River estuary along salinity gradient. Front Microbiol 11:285. https://doi.org/10.3389/fmicb.2020.00285

    Article  PubMed  PubMed Central  Google Scholar 

  22. He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1:16035. https://doi.org/10.1038/NMICROBIOL.2016.35

    Article  CAS  PubMed  Google Scholar 

  23. Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, Teske AP (2015) Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 18:1200–1211. https://doi.org/10.1111/1462-2920.13142

    Article  CAS  Google Scholar 

  24. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438. https://doi.org/10.1126/science.aac7745

    Article  CAS  PubMed  Google Scholar 

  25. Lloyd K, Schreiber L, Petersen D, Kjeldsen K, Lever M, Steen A, Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen B (2013) Predominant Archaea in marine sediments degrade detrital proteins. Nature 496:215–218. https://doi.org/10.1038/nature12033

    Article  CAS  PubMed  Google Scholar 

  26. Bräuer LS, Basiliko N, Siljanen MPH, Zinder HS (2020) Methanogenic archaea in peatlands. FEMS Microbiol Lett 367:fnaa172. https://doi.org/10.1093/femsle/fnaa172

  27. Zhou Z, Pan J, Wang F, Gu J, Li M (2018) Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 42:639–655. https://doi.org/10.1093/femsre/fuy023

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Z, Zhang G-X, Xu Y-B, Gu J-D (2018) Successive transitory distribution of Thaumarchaeota and partitioned distribution of Bathyarchaeota from the Pearl River estuary to the northern South China Sea. Appl Microbiol Biotechnol 102:8035–8048. https://doi.org/10.1007/s00253-018-9147-6

    Article  CAS  PubMed  Google Scholar 

  29. Fillol M, Auguet JC, Casamayor EO, Borrego CM (2016) Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J 10:665–677. https://doi.org/10.1038/ismej.2015.143

    Article  PubMed  Google Scholar 

  30. Xiang X, Wang H, Gong L, Liu Q (2014) Vertical variations and associated ecological function of bacterial communities from Sphagnum to underlying sediments in Dajiuhu Peatland. Sci China: Earth Sci 57:1013–1020. https://doi.org/10.1007/s11430-013-4752-9

    Article  CAS  Google Scholar 

  31. Xiang X, Wang H, Tian W, Wang R, Gong L, Xu Y, Man B (2020) Composition and function of bacterial communities of bryophytes and their underlying sediments in the Dajiuhu Peatland, central China. J Earth Sci. https://doi.org/10.1007/s12583-020-1391-x

  32. Coolen MJ, Hopmans EC, Rijpstra WIC, Muyzer G, Schouten S, Volkman JK, Damsté JSS (2004) Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem 35:1151–1167. https://doi.org/10.1016/j.orggeochem.2004.06.009

    Article  CAS  Google Scholar 

  33. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

  34. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

  36. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072. https://doi.org/10.1128/AEM.00595-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406. https://doi.org/10.1128/aem.67.10.4399-4406.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chao A, Lee s-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217. https://doi.org/10.1080/01621459.1992.10475194

    Article  Google Scholar 

  39. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. https://doi.org/10.1016/0006-3207(92)91201-3

    Article  Google Scholar 

  40. George D, Mallery P (2003) SPSS for Windows Step by Step: a simple Guide and Reference, 11.0 update, 4th Edn. Allyn & Bacon, Boston

  41. Mei W, Yu G, Lai J, Rao Q, Umezawa Y (2018) basicTrendline: Add trendline and confidence interval of basic regression models to plot. R package version 2.0.3. https://cran.r-project.org/web/packages/basicTrendline

  42. Revelle W, Revelle MW (2015) psych: Procedures for personality and psychological research. R package version 2.1.9. https://cran.r-project.org/web/packages/psych

  43. Rohart F, Gautier B, Singh A, Lê Cao K-A (2017) mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752

    Article  PubMed  PubMed Central  Google Scholar 

  44. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. R package version 2.5-7. https://cran.r-project.org/web/packages/vegan

  45. Braak CJFt, Smilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

  46. Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8:e1002687. https://doi.org/10.1371/journal.pcbi.1002687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Csardi G, Nepusz T (2006) The igraph software package for complex network research. R package version 1.2.6. https://cran.r-project.org/web/packages/igraph

  48. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219. https://doi.org/10.3389/fmicb.2014.00219

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes P, Gilbert J, xu J (2015) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901. https://doi.org/10.1038/ismej.2015.261

    Article  CAS  Google Scholar 

  50. Pala C, Molari M, Nizzoli D, Bartoli M, Viaroli P, Manini E (2018) Environmental drivers controlling bacterial and archaeal abundance in the sediments of a Mediterranean lagoon ecosystem. Curr Microbiol 75:1147–1155. https://doi.org/10.1007/s00284-018-1503-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen X, Andersen TJ, Morono Y, Inagaki F, Jørgensen BB, Lever MA (2017) Bioturbation as a key driver behind the dominance of Bacteria over Archaea in near-surface sediment. Sci Rep 7:2400. https://doi.org/10.1038/s41598-017-02295-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu Y (2014) Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 99:3291–3302. https://doi.org/10.1007/s00253-014-6262-x

    Article  CAS  PubMed  Google Scholar 

  53. Metje M, Frenzel P (2005) Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Appl Environ Microbiol 71:8191–8200. https://doi.org/10.1128/aem.71.12.8191-8200.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jungbluth S, Amend J, Rappe M (2016) Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci Data 4:170037. https://doi.org/10.7287/PEERJ.PREPRINTS.2613V1

    Article  Google Scholar 

  55. Jay Z, Beam J, Dlakić M, Rusch D, Kozubal M, Inskeep W (2018) Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat Microbiol 3:732–740. https://doi.org/10.1038/s41564-018-0163-1

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Wegener G, Hou J, Wang F, Xiao X (2019) Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 4:595–602. https://doi.org/10.1038/s41564-019-0364-2

    Article  CAS  PubMed  Google Scholar 

  57. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170. https://doi.org/10.1038/nmicrobiol.2016.170

    Article  CAS  PubMed  Google Scholar 

  58. Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306. https://doi.org/10.1016/j.mib.2011.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niu M, Zhou F, Yang Y, Sun Y, Zhu T, Shen F (2021) Abundance and composition of airborne archaea during springtime mixed dust and haze periods in Beijing. China. Sci Total Environ 752:141641. https://doi.org/10.1016/j.scitotenv.2020.141641

  60. Lin X, Handley KM, Gilbert JA, Kostka JE (2015) Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME J 9:2740–2744. https://doi.org/10.1038/ismej.2015.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang D (2018) Characteristics and influence factors of temporal and spatial variation of dissolved organic carbon in pore water from the Dajiuhu peatland,Hubei province. Master's Thesis, China University of Geosciences (Wuhan)

  62. Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, Kamanda Ngugi D, Göker M, Klenk H-P, Bajic V, Stingl U (2016) Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci Rep 6:19181. https://doi.org/10.1038/srep19181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guy L, Ettema TJ (2011) The archaeal ‘TACK’superphylum and the origin of eukaryotes. Trends Microbiol 19:580–587. https://doi.org/10.1016/j.tim.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  64. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nat Environ Pollut Technol 521:173–179. https://doi.org/10.1038/nature14447

    Article  CAS  Google Scholar 

  65. Etto R, Cruz L, Jesus E, Galvão C, Galvão F, Souza E, Pedrosa F, Steffens M (2012) Prokaryotic communities of acidic peatlands from the southern Brazilian Atlantic Forest. Braz J Microbiol 43:661–674. https://doi.org/10.1590/S1517-83822012000200031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fan X, Xing P (2016) Differences in the composition of archaeal communities in sediments from contrasting zones of lake Taihu. Front Microbiol 7:1510. https://doi.org/10.3389/fmicb.2016.01510

    Article  PubMed  PubMed Central  Google Scholar 

  67. Navarro-Noya YE, Valenzuela-Encinas C, Sandoval-Yuriar A, Jiménez-Bueno NG, Marsch R, Dendooven L (2015) Archaeal communities in a heterogeneous hypersaline-alkaline soil. Archaea 2015:646820. https://doi.org/10.1155/2015/646820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang S, Dong RM, Dong CZ, Huang L, Jiang H, Wei Y, Feng L, Liu D, Yang G, Zhang C, Dong H (2012) Diversity of microbial plankton across the Three Gorges Dam of the Yangtze River, China. Geosci Front 3:335–349. https://doi.org/10.1016/j.gsf.2011.11.013

    Article  Google Scholar 

  69. Hawkins A, Johnson K, Bräuer S (2014) Southern Appalachian peatlands support high archaeal diversity. Microb Ecol 67:587–602. https://doi.org/10.1007/s00248-013-0352-7

  70. Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, Liu Y, Banfield JF, Gu J-D (2018) Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 6:102. https://doi.org/10.1186/s40168-018-0488-2

    Article  PubMed  PubMed Central  Google Scholar 

  71. Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM (2015) Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 25:690–701. https://doi.org/10.1016/j.cub.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  72. Genderjahn S, Alawi M, Mangelsdorf K, Horn F, Wagner D (2018) Desiccation- and saline-tolerant bacteria and archaea in Kalahari Pan sediments. Front Microbiol 9:2082. https://doi.org/10.3389/fmicb.2018.02082

    Article  PubMed  PubMed Central  Google Scholar 

  73. Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563. https://doi.org/10.1038/ismej.2009.136

    Article  PubMed  Google Scholar 

  74. Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: A review. Soil Biol Biochem 57:979–994. https://doi.org/10.1016/j.soilbio.2012.10.003

    Article  CAS  Google Scholar 

  75. Holden J (2006) Chapter 14 Peatland hydrology. In: Martini IP, Martínez Cortizas A, Chesworth W (eds) Developments in earth surface processes. Elsevier, pp 319–346

    Google Scholar 

  76. Juottonen H, Fontaine L, Wurzbacher C, Drakare S, Peura S, Eiler A (2020) Archaea in boreal Swedish lakes are diverse, dominated by Woesearchaeota and follow deterministic community assembly. Environ Microbiol 22:3158–3171. https://doi.org/10.1111/1462-2920.15058

    Article  CAS  PubMed  Google Scholar 

  77. Putkinen A, Juottonen H, Juutinen S, Tuittila E-S, Fritze H, Yrjälä K (2009) Archaeal rRNA diversity and methane production in deep boreal peat. FEMS Microbiol Ecol 70:87–98. https://doi.org/10.1111/j.1574-6941.2009.00738.x

    Article  CAS  PubMed  Google Scholar 

  78. Huber H, Stetter K (2015) Desulfurococcales ord. nov. In: Whitman, WB, Rainey, F, Kämpfer, P, Trujillo, M, Chun, J, DeVos, P, Hedlund, B, Dedysh, S (eds) In Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, in association with Bergey’s Manual Trust, pp 1–2

  79. Nkamga V, Drancourt M (2016) Methanomassiliicoccales. In: Whitman, WB, Rainey, F, Kämpfer, P, Trujillo, M, Chun, J, DeVos, P, Hedlund, B, Dedysh, S (eds) In Bergey’s Manual of Systematics of Archaea and Bacteria. Wiley, in association with Bergey’s Manual Trust, pp 1–2

  80. Chen L, Hu M, Huang L, Hua Z, Kuang J, Li S, Shu W (2015) Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J 9:1579–1592. https://doi.org/10.1038/ismej.2014.245

    Article  PubMed  Google Scholar 

  81. Foster JW (2004) Escherichia coli acid resistance: Tales of an amateur acidophile. Nat Rev Microbiol 2:898–907. https://doi.org/10.1038/nrmicro1021

    Article  CAS  PubMed  Google Scholar 

  82. Guazzaroni M-E, Morgante V, Mirete S, Gonzalez-Pastor E (2012) Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Environ Microbiol 15:1088–1102. https://doi.org/10.1111/1462-2920.12021

    Article  CAS  PubMed  Google Scholar 

  83. Xiang X (2019) Environmental genomics study of archaea in Dajiuhu Peatland. Doctoral Thesis, China University of Geosciences (Wuhan)

  84. Cools N, Vesterdal L, De Vos B, Vanguelova E, Hansen K (2014) Tree species is the major factor explaining C: N ratios in European forest soils. For Ecol Manage 311:3–16. https://doi.org/10.1016/j.foreco.2013.06.047

    Article  Google Scholar 

  85. Shin J-H, An N-H, Lee S-M, Ok J-H, Lee B-W (2016) Estimation of N mineralization potential and N mineralization rate of organic amendments as affected by C: N ratio and temperature in paddy soil. Korean J Soil Sci Fert 49:712–719. https://doi.org/10.7745/KJSSF.2016.49.6.712

    Article  CAS  Google Scholar 

  86. Fan K, Cardona C, Li Y, Shi Y, Xiang X, Shen C, Wang H, Gilbert JA, Chu H (2017) Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol Biochem 113:275–284. https://doi.org/10.1016/j.soilbio.2017.06.020

    Article  CAS  Google Scholar 

  87. Jones CM, Hallin S (2019) Geospatial variation in co-occurrence networks of nitrifying microbial guilds. Mol Ecol 28:293–306. https://doi.org/10.1111/mec.14893

    Article  CAS  PubMed  Google Scholar 

  88. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256. https://doi.org/10.1016/S0010-4655(02)00201-1

    Article  Google Scholar 

  89. Trosvik P, de Muinck EJ (2015) Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome 3:44. https://doi.org/10.1186/s40168-015-0107-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Miss Renju Liu and Mr. Jiang Liu (Third Institute of Oceanography), Ziqi Zhang (Shennongjia Nature Reserve), and Jinjiang Pan (China University of Geosciences (Wuhan)) for their assist in sampling and experience. We also thank Dr. Chuanlun Zhang (Southern University of Science and Technology), Meng Li (Shenzhen University), Olli H Tuovinen (Ohio State University), the editor, and the anonymous reviewers for their comments on an early version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (No. 41572325), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1703, CUGQY1922), and Open Research Fund of Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, China (2021F10).

Author information

Authors and Affiliations

Authors

Contributions

X.X. and H.W. conceived and designed this experiment; X.X., Y.X., and W.T. performed the experiment and collected data; X.X., B.M., and L.G. analyzed those data. X.X., H.W., and H. Y. discussed the results and revised the manuscript.

Corresponding author

Correspondence to Hongmei Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 394 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Wang, H., Man, B. et al. Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China. Microb Ecol 85, 557–571 (2023). https://doi.org/10.1007/s00248-022-01990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01990-1

Keywords

Navigation