Skip to main content

Advertisement

Log in

Bacterioneuston and Bacterioplankton Structure and Abundance in Two Trophically Distinct Marine Environments — a Marine Lake and the Adjacent Coastal Site on the Adriatic Sea

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Marine surface microlayer (SML) is a large and extreme marine environment with an important role in biogeochemical cycling and climate regulation. We explored the seasonal structure and abundance of bacterial assemblages in SML (bacterioneuston) and underlying water layer (ULW) (bacterioplankton) in eutrophic marine Rogoznica Lake and more oligotrophic coastal area of the adjacent Adriatic Sea. SML and ULW in each site were similar in pH, salinity, dissolved oxygen, oxygen saturation, and temperature. Rogoznica Lake was colder in winter and warmer in summer compared to the Adriatic Sea. Regarding nutrients, SML and ULW were notably different environments. SML was consistently enriched in nitrate, nitrite, orthophosphate, and total organic carbon than ULW in both investigated environments. Except in spring in Rogoznica Lake, bacterial abundance in SML was also significantly higher (p < 0.05) than in ULW. Both layers and sites show prominent seasonal variability. High-throughput 16S rRNA gene sequencing of DNA and cDNA revealed a considerable difference in bacterial assemblage structure, although study sites were < 200 m apart. Heterotrophs were predominant in both layers with pronounced spatial and temporal structural differences, except in autumn in Rogoznica Lake when, autotrophs became the dominant fraction under oxygen-deprived conditions. All these variations were driven by in situ conditions, the most important ones being total organic carbon and temperature (and additionally dissolved oxygen in Rogoznica Lake). This is especially important in terms of ongoing eutrophication, warming and deoxygenation, noticed not only in the Adriatic Sea and Rogoznica Lake but globally as well. Therefore, further structural and physiological changes in bacterioneuston and bacterioplankton assemblages can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study are included in this article (and its Supplementary information files) and deposited in the European Nucleotide Archive (ENA) database under the project accession number PRJEB45256.

Code Availability

Not applicable.

References

  1. Hunter KA (1980) Processes affecting particulate trace-metals in the sea-surface microlayer. Mar Chem 9:49–70. https://doi.org/10.1016/0304-4203(80)90006-7

    Article  CAS  Google Scholar 

  2. Engel A, Bange HW, Cunliffe M, Burrows SM, Friedrichs G, Galgani L, Herrmann H, Hertkorn N, Johnson M, Liss PS, Quinn PK, Schartau M, Soloviev A, Stolle C, Upstill-Goddard RC, van Pinxteren M, Zancker B (2017) The ocean’s vital skin: toward an integrated understanding of the sea surface microlayer. Front Mar Sci 4.https://doi.org/10.3389/fmars.2017.00165

  3. Wurl O, Obbard JP (2004) A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Mar Pollut Bull 48:1016–1030. https://doi.org/10.1016/j.marpolbul.2004.03.016

    Article  CAS  Google Scholar 

  4. Cunliffe M, Engel A, Frka S, Gasparovic B, Guitart C, Murrell JC, Salter M, Stolle C, Upstill-Goddard R, Wurl O (2013) Sea surface microlayers: a unified physicochemical and biological perspective of the air-ocean interface. Prog Oceanogr 109:104–116. https://doi.org/10.1016/j.pocean.2012.08.004

    Article  Google Scholar 

  5. Fuhrman JA, Steele JA (2008) Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat Microb Ecol 53:69–81. https://doi.org/10.3354/ame01222

    Article  Google Scholar 

  6. Cincinelli A, Stortini AM, Checchini L, Martellini T, Del Bubba M, Lepri L (2005) Enrichment of organic pollutants in the sea surface microlayer (SML) at Terra Nova Bay, Antarctica: influence of SML on superfacial snow composition. J Environ Monit 7:1305–1312. https://doi.org/10.1039/b507321a

    Article  CAS  Google Scholar 

  7. Naumann E (1917) Beitrage zur Kenntnis des Teichnannoplanktons. II. Uber das Neuston das Susswassers. Biologisches Zentralblatt 37:98–106

  8. Ram ASP, Mari X, Brune J, Torreton JP, Chu VT, Raimbault P, Niggemann J, Sime-Ngando T (2018) Bacterial-viral interactions in the sea surface microlayer of a black carbon-dominated tropical coastal ecosystem (Halong Bay, Vietnam). Elementa-Sci Anthrop 6.https://doi.org/10.1525/elementa.276

  9. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791. https://doi.org/10.1038/nrmicro1747

    Article  CAS  Google Scholar 

  10. Franklin MP, McDonald IR, Bourne DG, Owens NJP, Upstill-Goddard RC, Murrell JC (2005) Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glass. Environ Microbiol 7:723–736. https://doi.org/10.1111/j.1462-2920.2004.00736.x

    Article  CAS  Google Scholar 

  11. Cunliffe M, Whiteley AS, Newbold L, Oliver A, Schafer H, Murrell JC (2009) Comparison of bacterioneuston and bacterioplankton dynamics during a phytoplankton bloom in a fjord mesocosm. Appl Environ Microb 75:7173–7181. https://doi.org/10.1128/Aem.01374-09

    Article  CAS  Google Scholar 

  12. Cunliffe M, Schafer H, Harrison E, Cleave S, Upstill-Goddard R, Murrell JC (2008) Phylogenetic and functional gene analysis of the bacterial and archaeal communities associated with the surface microlayer of an estuary. Isme J 2:776–789. https://doi.org/10.1038/ismej.2008.28

    Article  CAS  Google Scholar 

  13. Auguet JC, Casamayor EO (2008) A hotspot for cold crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086. https://doi.org/10.1111/j.1462-2920.2007.01498.x

    Article  CAS  Google Scholar 

  14. Hortnagl P, Perez MT, Sommaruga R (2010) Living at the border: a community and single-cell assessment of lake bacterioneuston activity. Limnol Oceanogr 55:1134–1144. https://doi.org/10.4319/lo.2010.55.3.1134

    Article  CAS  Google Scholar 

  15. Zancker B, Cunliffe M, Engel A (2018) Bacterial community composition in the sea surface microlayer off the Peruvian Coast. Front Microbiol 9.https://doi.org/10.3389/fmicb.2018.02699

  16. Agogue H, Casamayor EO, Bourrain M, Obernosterer I, Joux F, Herndl GJ, Lebaron P (2005) A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. Fems Microbiol Ecol 54:269–280. https://doi.org/10.1016/j.femsec.2005.04.002

    Article  CAS  Google Scholar 

  17. Cunliffe M, Upstill-Goddard RC, Murrell JC (2011) Microbiology of aquatic surface microlayers. Fems Microbiol Rev 35:233–246. https://doi.org/10.1111/j.1574-6976.2010.00246.x

    Article  CAS  Google Scholar 

  18. Nakajima R, Tsuchiya K, Nakatomi N, Yoshida T, Tada Y, Konno F, Toda T, Kuwahara VS, Hamasaki K, Othman BR, Segaran TC, Effendy AWM (2013) Enrichment of microbial abundance in the sea-surface microlayer over a coral reef: implications for biogeochemical cycles in reef ecosystems. Mar Ecol Prog Ser 490:11–22. https://doi.org/10.3354/meps10481

    Article  CAS  Google Scholar 

  19. Astrahan P, Herut B, Paytan A, Rahav E (2016) The impact of dry atmospheric deposition on the sea-surface microlayer in the SE Mediterranean Sea: An Experimental Approach. Front Mar Sci 3.https://doi.org/10.3389/fmars.2016.00222

  20. Ciglenečki I, Vilibić I, Dautović J, Vojvodić V, Ćosović B, Zemunik P, Dunić N, Mihanović H (2020) Dissolved organic carbon and surface active substances in the northern Adriatic Sea: long-term trends, variability and drivers. Sci Total Environ 730.https://doi.org/10.1016/j.scitotenv.2020.139104

  21. Ninčević Gladan Ž, Marasović I, Kušpilić G, Krstulović N, Šolić M, Šestanović S (2006) Abundance and composition of picoplankton in the mid Adriatic Sea. Acta Adriat 47:127–140

    Google Scholar 

  22. Čanković M, Žučko J, Petrić I, Marguš M, Ciglenečki I (2020) Impact of euxinic holomictic conditions on prokaryotic assemblages in a marine meromictic lake. Aquat Microb Ecol 84:141–154. https://doi.org/10.3354/ame01931

    Article  Google Scholar 

  23. Ciglenečki I, Ljubešić Z, Janeković I, Batistić M (2017) Rogoznica Lake, a euxinic marine lake on the Adriatic Coast (Croatia) that fluctuates between anoxic holomictic and meromictic conditions. In: Gulati RD, Zadereev ES, Degermendzhi AG (eds) Ecology of meromictic lakes, vol 228. Springer, Cham, Switz, pp 125–154

  24. Čanković M, Žučko J, Radić I D, Janeković I, Petrić I, Ciglenečki I, Collins G (2019) Microbial diversity and long-term geochemical trends in the euxinic zone of a marine, meromictic lake. Syst Appl Microbiol 42.https://doi.org/10.1016/j.syapm.2019.126016

  25. Čanković M, Petrić I, Marguš M, Ciglenečki I (2017) Spatio-temporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16 S rRNA analysis. J Mar Syst 172:14–23. https://doi.org/10.1016/j.jmarsys.2017.03.003

    Article  Google Scholar 

  26. Ciglenečki I, Janeković I, Marguš M, Bura-Nakić E, Carić M, Ljubešić Z, Batistić M, Hrustić E, Dupčić I, Garić R (2015) Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica. Lake, Adriatic coast). Cont Shelf Res 108:144–155. https://doi.org/10.1016/j.csr.2015.05.007

    Article  Google Scholar 

  27. Garrett WD (1965) Collection of slick-forming materials from the sea surface. Limnol Oceanogr 10:602–605

    Article  Google Scholar 

  28. Hunter KA (1997) Chemistry of the sea-surface microlayer. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, New York, pp 287–319

  29. Strickland JD, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board Of Canada, Ottawa

  30. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491. https://doi.org/10.1128/Aem.66.12.5488-5491.2000

    Article  CAS  Google Scholar 

  31. Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335. https://doi.org/10.1016/j.mimet.2004.07.002

    Article  CAS  Google Scholar 

  32. Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262

    Article  CAS  Google Scholar 

  33. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414. https://doi.org/10.1111/1462-2920.13023

    Article  CAS  Google Scholar 

  34. Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137. https://doi.org/10.3354/ame01753

    Article  Google Scholar 

  35. Bolyen E, Rideout JR, Dillon MR, Bokulich N, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodriguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo JR, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang LJ, Kaehler BD, Bin Kang K, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vazquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan YH, Wang MX, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang YL, Zhu QY, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  Google Scholar 

  36. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581. https://doi.org/10.1038/Nmeth.3869

    Article  CAS  Google Scholar 

  37. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  38. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. Isme J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  Google Scholar 

  39. Clarke K, Gorley R (2005) PRIMER: Getting started with v6. PRIMER-E Ltd, Plymouth, UK 931: 932

  40. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York

  41. Ciglenečki I, Čanković M, Kuzmić M, Pagano M (2020) Accumulation of organic matter in a mesotidal Mediterranean lagoon (Boughrara, Tunisia). Estuar Coast Shelf S 240.https://doi.org/10.1016/j.ecss.2020.106780

  42. Ćosović B, Ciglenečki I, Viličić D, Ahel M (2000) Distribution and seasonal variability of organic matter in a small eutrophicated salt lake. Estuar Coast Shelf S 51:705–715. https://doi.org/10.1006/ecss.2000.0721

    Article  CAS  Google Scholar 

  43. Šolić M, Krstulović N, Bojanić N, Marasović I, Ninčević Z (1998) Seasonal switching between relative importance of bottom-up and top-down control of bacterial and heterotrophic nanoflagellate abundance. J Mar Biol Assoc Uk 78:755–766. https://doi.org/10.1017/S0025315400044763

    Article  Google Scholar 

  44. Hoarfrost A, Nayfach S, Ladau J, Yooseph S, Arnosti C, Dupont CL, Pollard KS (2020) Global ecotypes in the ubiquitous marine clade SAR86. Isme J 14:178–188. https://doi.org/10.1038/s41396-019-0516-7

    Article  CAS  Google Scholar 

  45. Korlević M, Ristova PP, Garić R, Amann R, Orlic S (2015) Bacterial diversity in the South Adriatic Sea during a strong, deep winter convection year. Appl Environ Microbiol 81:1715–1726. https://doi.org/10.1128/Aem.03410-14

    Article  Google Scholar 

  46. Kolda A, Ljubesić Z, Gavrilović A, Jug-Dujaković J, Pikelj K, Kapetanović D (2020) Metabarcoding Cyanobacteria in coastal waters and sediment in central and southern Adriatic Sea. Acta Bot Croat 79:157–169. https://doi.org/10.37427/botcro-2020-021

    Article  CAS  Google Scholar 

  47. Oh KH, Lee SY, Lee MH, Oh TK, Yoon JH (2011) Paraperlucidibaca baekdonensis gen. nov., sp nov., isolated from seawater. Int J Syst Evol Micr 61:1382–1385. https://doi.org/10.1099/ijs.0.023994-0

    Article  Google Scholar 

  48. Wang GH, Fan JW, Wu HL, Zhang XY, Li GY, Zhang H, Yang X, Ye FF, Xiang WZ, Li X (2014) Nonhongiella spirulinensis gen. nov., sp. nov., a bacterium isolated from a cultivation pond of Spirulina platensis in Sanya, China (vol 104, pg 933, 2013). Anton Leeuw Int J G 106:591–592. https://doi.org/10.1007/s10482-014-0222-4

    Article  Google Scholar 

  49. Liu SG, Luo YR, Huang LF (2016) Dynamics of size-fractionated bacterial communities during the coastal dispersal of treated municipal effluents. Appl Microbiol Biot 100:5839–5848. https://doi.org/10.1007/s00253-016-7408-9

    Article  CAS  Google Scholar 

  50. von Scheibner M, Sommer U, Jürgens K (2017) Tight coupling of Glaciecola spp. and diatoms during cold-water phytoplankton spring blooms. Front Microbiol 8: 27.

  51. Chrismas NAM, Barker G, Anesio AM, Sanchez-Baracaldo P (2016) Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. Bmc Genomics 17.https://doi.org/10.1186/s12864-016-2846-4

  52. Yilmaz P, Yarza P, Rapp JZ, Glockner FO (2016) Expanding the world of marine bacterial and archaeal clades. Front Microbiol 6.https://doi.org/10.3389/fmicb.2015.01524

  53. Suzuki T, Yazawa T, Morishita N, Maruyama A, Fuse H (2019) Genetic and physiological characteristics of a novel marine propylene-assimilating halieaceae bacterium isolated from seawater and the diversity of its alkene and epoxide metabolism genes. Microbes Environ 34:33–42. https://doi.org/10.1264/jsme2.ME18053

    Article  Google Scholar 

  54. Yoon J, Kasai H, Yokota A (2010) Phylogenetic interrelationships of the genus Rubritalea inferred from 16S rRNA and gyrb gene sequences. Microbiol Cult Collect 26:89–95

    Google Scholar 

  55. Elifantz H, Horn G, Ayon M, Cohen Y, Minz D (2013) Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. Fems Microbiol Ecol 85:348–357. https://doi.org/10.1111/1574-6941.12122

    Article  CAS  Google Scholar 

  56. Koch H, Freese HM, Hahnke RL, Simon M, Wietz M (2019) Adaptations of Alteromonas sp. 76–1 to polysaccharide degradation: a CAZyme plasmid for ulvan degradation and two alginolytic systems. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00504

  57. Teramoto M, Ohuchi M, Hatmanti A, Darmayati Y, Widyastuti Y, Harayama S, Fukunaga Y (2011) Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int J Syst Evol Micr 61:375–380. https://doi.org/10.1099/ijs.0.018671-0

    Article  CAS  Google Scholar 

  58. Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, Martinez-Urtaza J (2018) Vibrio spp. infections. Nat Rev Dis Primers 4:1–19

    Article  Google Scholar 

  59. Agogue H, Joux F, Obernosterer I, Lebaron P (2005) Resistance of marine bacterioneuston to solar radiation. Appl Environ Microb 71:5282–5289. https://doi.org/10.1128/Aem.71.9.5282-5289.2005

    Article  CAS  Google Scholar 

  60. Beg Paklar G, Vilibić I, Grbec B, Matić F, Mihanović H, Dzoić T, Šantić D, Šestanović S, Šolić M, Ivatek-Sahdan S, Kušpilić G (2020) Record-breaking salinities in the middle Adriatic during summer 2017 and concurrent changes in the microbial food web. Prog Oceanogr 185.https://doi.org/10.1016/j.pocean.2020.102345

  61. Pjevac P, Korlević M, Berg JS, Bura-Nakić E, Ciglenečki I, Amann R, Orlić S (2015) Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Appl Environ Microb 81:298–308. https://doi.org/10.1128/Aem.02435-14

    Article  Google Scholar 

  62. Rastelli E, Corinaldesi C, Petani B, Dell’Anno A, Ciglenečki I, Danovaro R (2016) Enhanced viral activity and dark CO2 fixation rates under oxygen depletion: the case study of the marine Lake Rogoznica. Environ Microbiol 18:4511–4522. https://doi.org/10.1111/1462-2920.13484

    Article  CAS  Google Scholar 

  63. Ordulj M, Krstulović N, Šantić D, Jozić S, Šolić M (2017) Viral dynamics in two trophically different areas in the Central Adriatic Sea. Helgol Mar Res 71:1–11

    Article  Google Scholar 

  64. Hultin KA, Krejci R, Pinhassi J, Gomez-Consarnau L, Mårtensson EM, Hagström Å, Nilsson ED (2011) Aerosol and bacterial emissions from Baltic Seawater. Atmos Res 99:1–14

    Article  Google Scholar 

  65. Comte J, Lindström ES, Eiler A, Langenheder S (2014) Can marine bacteria be recruited from freshwater sources and the air? ISME J 8:2423–2430

    Article  Google Scholar 

  66. Rastelli E, Corinaldesi C, Dell’Anno A, Martire ML, Greco S, Facchini MC, Rinaldi M, O’Dowd C, Ceburnis D, Danovaro R (2017) Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach. Sci Rep-Uk 7:1–10

    CAS  Google Scholar 

  67. Mescioglu E, Rahav E, Belkin N, Xian P, Eizenga JM, Vichik A, Herut B, Paytan A (2019) Aerosol microbiome over the Mediterranean Sea diversity and abundance. Atmosphere 10:440

    Article  CAS  Google Scholar 

  68. Orlović-Leko P, Ciglenečki I, Sikirić MD, Mateša S (2020) Transport of Saharan Dust Over Mediterranean basin-ecological and health risks. Environmental Atmospheric Sciences and Air Pollut. https://doi.org/10.21467/abstracts.93.63

  69. González-Toril E, Osuna S, Viúdez-Moreiras D, Navarro-Cid I, Del Toro SD, Sor S, Bardera R, Puente-Sánchez F, de Diego-Castilla G, Aguilera Á (2020) Impacts of Saharan dust intrusions on bacterial communities of the low troposphere. Sci Rep-Uk 10:1–13

    Google Scholar 

  70. Kušan AC, Kroflič A, Grgić I, Ciglenečki I, Frka S (2020) Chemical characterization of fine aerosols in respect to water-soluble ions at the eastern Middle Adriatic coast. Environmental Science and Pollution Research 1–16. https://doi.org/10.1007/s11356-020-07617-7

Download references

Acknowledgements

The authors are thankful to Zdeslav Zovko for TOC analysis as well as to Sara Bujas for editing and proofreading.

Funding

This study was funded by the Croatian Science Foundation through the project IP-2018–01-1717, MARRES (research funder – dr. Irena Ciglenečki-Jušić).

Author information

Authors and Affiliations

Authors

Contributions

MČ — conceived the study, conducted sampling and experimental work, and wrote the manuscript; MDS — conducted bioinformatical analysis; IDR — conducted nutrient analysis; IC — contributed substantially to manuscript drafting, project administration, and funding acquisition. All authors have read the manuscript and approved its publication.

Corresponding author

Correspondence to Milan Čanković.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 949 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čanković, M., Dutour-Sikirić, M., Radić, I.D. et al. Bacterioneuston and Bacterioplankton Structure and Abundance in Two Trophically Distinct Marine Environments — a Marine Lake and the Adjacent Coastal Site on the Adriatic Sea. Microb Ecol 84, 996–1010 (2022). https://doi.org/10.1007/s00248-021-01934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01934-1

Keywords

Navigation