Skip to main content

Advertisement

Log in

Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity

  • Human Microbiome
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Metacommunity theory dictates that a microbial community is supported both by local ecological processes and the dispersal of microbes between neighboring communities. Studies that apply this perspective to human-associated microbial communities are thus far limited to the gut microbiome. Yet, the skin serves as the primary barrier between the body and the external environment, suggesting frequent opportunities for microbial dispersal to the variable microbial communities that are housed across skin sites. This paper applies metacommunity theory to understand the dispersal of microbes to the skin from the physical and social environment, as well as between different skin sites on an individual’s body. This includes highlighting the role of human behavior in driving microbial dispersal, as well as shaping physiological properties of skin that underscore local microbial community dynamics. By leveraging data from research on the skin microbiomes of amphibians and other animals, this paper provides recommendations for future research on the skin microbial metacommunity, including generating testable predictions about the ecological underpinnings of the skin microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gordon JI, Dewey KG, Mills DA, Medzhitov RM (2012) The human gut microbiota and undernutrition. Sci Transl Med 37:1–12. https://doi.org/10.1126/scitranslmed.3004347

    Article  Google Scholar 

  2. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. https://doi.org/10.1038/nature07540

    Article  PubMed  CAS  Google Scholar 

  3. Smith MI, Yatsunenko T, Manary MJ et al (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548–554. https://doi.org/10.1126/science.1229000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gallo RL, Nakatsuji T (2011) Microbial symbiosis with the innate immune defense system of the skin. J Investig Dermatol 131:1974–1980. https://doi.org/10.1038/jid.2011.182

    Article  PubMed  CAS  Google Scholar 

  5. Naik S, Bouladoux N, Wilhelm C et al (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119. https://doi.org/10.1126/science.1225152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Belkaid Y, Tamoutounour S (2016) The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol 16:353–366. https://doi.org/10.1038/nri.2016.48

    Article  PubMed  CAS  Google Scholar 

  7. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712. https://doi.org/10.1038/nrn3346

    Article  PubMed  CAS  Google Scholar 

  8. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820

    Article  PubMed  CAS  Google Scholar 

  9. Callewaert C, Lambert J, de Wiele TV (2017) Towards a bacterial treatment for armpit malodour. Exp Dermatol 26:388–391. https://doi.org/10.1111/exd.13259

    Article  PubMed  Google Scholar 

  10. Urban J, Fergus DJ, Savage AM et al (2016) The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome. PeerJ 4:e1605. https://doi.org/10.7717/peerj.1605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yu JJ, Manus MB, Mueller O et al (2018) Antibacterial soap use impacts skin microbial communities in rural Madagascar. PLoS ONE 13:e0199899. https://doi.org/10.1371/journal.pone.0199899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Brito IL, Gurry T, Zhao S et al (2019) Transmission of human-associated microbiota along family and social networks. Nat Microbiol 4:964–971. https://doi.org/10.1038/s41564-019-0409-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ferretti P, Pasolli E, Tett A et al (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133-145.e5. https://doi.org/10.1016/j.chom.2018.06.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Meadow JF, Bateman AC, Herkert KM et al (2013) Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 1:e53. https://doi.org/10.7717/peerj.53

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miller ET, Svanbäck R, Bohannan BJM (2018) Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol Evol 33:926–935. https://doi.org/10.1016/j.tree.2018.09.002

    Article  PubMed  Google Scholar 

  16. Wilson DS (1992) Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000. https://doi.org/10.2307/1941449

    Article  Google Scholar 

  17. Costello EK, Stagaman K, Dethlefsen L et al (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262. https://doi.org/10.1126/science.1224203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Koskella B, Hall LJ, Metcalf CJE (2016) The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol 1:1606–1615. https://doi.org/10.1038/s41559-017-0340-2

    Article  Google Scholar 

  19. Burns AR, Miller E, Agarwal M et al (2017) Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. PNAS 114:11181–11186. https://doi.org/10.1073/pnas.1702511114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Adair KL, Douglas AE (2017) Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol 35:23–29. https://doi.org/10.1016/j.mib.2016.11.002

    Article  PubMed  Google Scholar 

  21. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  22. Brown JJ, Mihaljevic JR, Marteaux LD, Hrček J (2020) Metacommunity theory for transmission of heritable symbionts within insect communities. Ecol Evol 10:1703–1721. https://doi.org/10.1002/ece3.5754

    Article  PubMed  Google Scholar 

  23. Borer ET, Laine A-L, Seabloom EW (2016) A multiscale approach to plant disease using the metacommunity concept. Annu Rev Phytopathol 54:397–418. https://doi.org/10.1146/annurev-phyto-080615-095959

    Article  PubMed  CAS  Google Scholar 

  24. Capone KA, Dowd SE, Stamatas GN, Nikolovski J (2011) Diversity of the human skin microbiome early in life. J Investig Dermatol 131:2026–2032. https://doi.org/10.1038/jid.2011.168

    Article  PubMed  CAS  Google Scholar 

  25. Council SE, Savage AM, Urban JM et al (2016) Diversity and evolution of the primate skin microbiome. Proc R Soc B 283:20152586. https://doi.org/10.1098/rspb.2015.2586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Engel K, Pankoke H, Jünemann S et al (2020) Family matters: skin microbiome reflects the social group and spatial proximity in wild zebra finches. BMC Ecol 20:58. https://doi.org/10.1186/s12898-020-00326-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Manus MB, Kuthyar S, Perroni-Marañón AG, Núñez-de la Mora A, Amato KR (2020) Infant Skin Bacterial Communities Vary by Skin Site and Infant Age across Populations in Mexico and the United States. mSystems 5:e00834-20. https://doi.org/10.1128/mSystems.00834-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Miller EA, Beasley DE, Dunn RR, Archie EA (2016) Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front Microbiol 7.https://doi.org/10.3389/fmicb.2016.01936

  29. Nobbs AH, Jenkinson HF, Jakubovics NS (2011) Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 90:1271–1278. https://doi.org/10.1177/0022034511399096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ross AA, Doxey AC, Neufeld JD (2017) The skin microbiome of cohabiting couples. mSystems 2:e00043-17. https://doi.org/10.1128/mSystems.00043-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Song SJ, Lauber C, Costello EK et al (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458. https://doi.org/10.7554/eLife.00458

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baviera G, Leoni MC, Capra L et al (2014) Microbiota in healthy skin and in atopic eczema. Biomed Res Int 2014:1–6. https://doi.org/10.1155/2014/436921

    Article  Google Scholar 

  33. Wanke I, Steffen H, Christ C et al (2011) Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Investig Dermatol 131:382–390. https://doi.org/10.1038/jid.2010.328

    Article  PubMed  CAS  Google Scholar 

  34. Korpela K, Costea P, Coelho LP et al (2018) Selective maternal seeding and environment shape the human gut microbiome. Genome Res 28:561–568. https://doi.org/10.1101/gr.233940.117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dunn RR, Fierer N, Henley JB et al (2013) Home life: factors structuring the bacterial diversity found within and between homes. PLoS ONE 8:e64133. https://doi.org/10.1371/journal.pone.0064133

    Article  PubMed  PubMed Central  Google Scholar 

  36. Flores GE, Bates ST, Caporaso JG et al (2013) Diversity, distribution and sources of bacteria in residential kitchens. Environ Microbiol 15:588–596. https://doi.org/10.1111/1462-2920.12036

    Article  PubMed  CAS  Google Scholar 

  37. Lax S, Smith DP, Hampton-Marcell J et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052. https://doi.org/10.1126/science.1254529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Selway CA, Mills JG, Weinstein P et al (2020) Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ Int 145:106084. https://doi.org/10.1016/j.envint.2020.106084

    Article  PubMed  Google Scholar 

  39. Vandegrift R, Fahimipour AK, Muscarella M et al (2019) Moving microbes: the dynamics of transient microbial residence on human skin. bioRxiv. https://doi.org/10.1101/586008

    Article  Google Scholar 

  40. Nemergut DR, Schmidt SK, Fukami T et al (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356. https://doi.org/10.1128/MMBR.00051-12

    Article  PubMed  PubMed Central  Google Scholar 

  41. Manus MB, Yu JJ, Park LP et al (2017) Environmental influences on the skin microbiome of humans and cattle in rural Madagascar. Evol Med Public Health 2017:144–153. https://doi.org/10.1093/emph/eox013

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marples MJ (1969) Life on the human skin. Sci Am 220:108–115

    Article  PubMed  CAS  Google Scholar 

  43. Perez GIP, Gao Z, Jourdain R et al (2016) Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS ONE 11:e0151990. https://doi.org/10.1371/journal.pone.0151990

    Article  CAS  Google Scholar 

  44. Zhu T, Liu X, Kong F-Q et al (2019) Age and mothers: potent influences of children’s skin microbiota. J Investig Dermatol 139:2497–2505. https://doi.org/10.1016/j.jid.2019.05.018

    Article  PubMed  CAS  Google Scholar 

  45. Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192. https://doi.org/10.1126/science.1171700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mallott EK, Amato KR (2021) Host specificity of the gut microbiome. Nat Rev Microbiol 1–15https://doi.org/10.1038/s41579-021-00562-3

  47. Karkman A, Lehtimäki J, Ruokolainen L (2017) The ecology of human microbiota: dynamics and diversity in health and disease. Ann N Y Acad Sci 1399:78–92. https://doi.org/10.1111/nyas.13326

    Article  PubMed  Google Scholar 

  48. Miller ET, Bohannan BJM (2019) Life between patches: incorporating microbiome biology alters the predictions of metacommunity models. Front EcolEvol 7.https://doi.org/10.3389/fevo.2019.00276

  49. Tung J, Barreiro LB, Burns MB, et al (2015) Social networks predict gut microbiome composition in wild baboons. eLife 4 https://doi.org/10.7554/eLife.05224

  50. Lucas FS, Moureau B, Jourdie V, Heeb P (2005) Brood size modifications affect plumage bacterial assemblages of European starlings. Mol Ecol 14:639–646. https://doi.org/10.1111/j.1365-294X.2005.02436.x

    Article  PubMed  Google Scholar 

  51. Walke JB, Harris RN, Reinert LK et al (2011) Social immunity in amphibians: evidence for vertical transmission of innate defenses. Biotropica 43:396–400. https://doi.org/10.1111/j.1744-7429.2011.00787.x

    Article  Google Scholar 

  52. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Asnicar F, Manara S, Zolfo M, et al (2017) Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2 https://doi.org/10.1128/mSystems.00164-16

  54. Yassour M, Jason E, Hogstrom LJ et al (2018) Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24:146-154.e4. https://doi.org/10.1016/j.chom.2018.06.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Clemente JC, Pehrsson EC, Blaser MJ et al (2015) The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183. https://doi.org/10.1126/sciadv.1500183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Avena CV, Parfrey LW, Leff JW et al (2016) Deconstructing the bat skin microbiome: influences of the host and the environment. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01753

    Article  PubMed  PubMed Central  Google Scholar 

  57. Winter AS, Hathaway JJM, Kimble JC et al (2017) Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits. PeerJ 5:e3944. https://doi.org/10.7717/peerj.3944

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zeng B, Zhao J, Guo W et al (2017) High-altitude living shapes the skin microbiome in humans and pigs. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01929

    Article  PubMed  PubMed Central  Google Scholar 

  59. Russo CD, Weller DW, Nelson KE et al (2018) Bacterial species identified on the skin of bottlenose dolphins off southern California via next generation sequencing techniques. Microb Ecol 75:303–309. https://doi.org/10.1007/s00248-017-1071-2

    Article  PubMed  Google Scholar 

  60. Lavrinienko A, Tukalenko E, Mappes T, Watts PC (2018) Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6:209. https://doi.org/10.1186/s40168-018-0595-0

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kueneman JG, Parfrey LW, Woodhams DC et al (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250. https://doi.org/10.1111/mec.12510

    Article  PubMed  Google Scholar 

  62. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 107:11971–11975. https://doi.org/10.1073/pnas.1002601107

    Article  PubMed  PubMed Central  Google Scholar 

  63. Roggenbuck M, Bærholm Schnell I, Blom N et al (2014) The microbiome of New World vultures. Nat Commun 5:5498. https://doi.org/10.1038/ncomms6498

    Article  PubMed  CAS  Google Scholar 

  64. Ishaq SL, Rapp M, Byerly R et al (2019) Framing the discussion of microorganisms as a facet of social equity in human health. PLoS Biol 17:e3000536. https://doi.org/10.1371/journal.pbio.3000536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Amato KR, Arrieta M-C, Azad MB, et al (2021) The human gut microbiome and health inequities. PNAS 118. https://doi.org/10.1073/pnas.2017947118

  66. Ruokolainen L, von Hertzen L, Fyhrquist N et al (2015) Green areas around homes reduce atopic sensitization in children. Allergy 70:195–202. https://doi.org/10.1111/all.12545

    Article  PubMed  CAS  Google Scholar 

  67. Mills JG, Weinstein P, Gellie NJC et al (2017) Urban habitat restoration provides a human health benefit through microbiome rewilding: the microbiome rewilding hypothesis. Restor Ecol 25:866–872. https://doi.org/10.1111/rec.12610

    Article  Google Scholar 

  68. Hehemann J-H, Correc G, Barbeyron T et al (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912. https://doi.org/10.1038/nature08937

    Article  PubMed  CAS  Google Scholar 

  69. Shaffer M, Lozupone C (2018) Prevalence and source of fecal and oral bacteria on infant, child, and adult hands. mSystems 3:e00192-17. https://doi.org/10.1128/mSystems.00192-17

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ali J, Huber M (2010) Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463:653–656

    Article  PubMed  CAS  Google Scholar 

  71. Ali JR, Vences M (2019) Mammals and long-distance over-water colonization: the case for rafting dispersal; the case against phantom causeways. J Biogeogr 46:2632–2636

    Article  Google Scholar 

  72. Shade A, Peter H, Allison SD, et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3. https://doi.org/10.3389/fmicb.2012.00417

  73. Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. https://doi.org/10.1126/science.1177486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346:954–959. https://doi.org/10.1126/science.1260144

    Article  PubMed  CAS  Google Scholar 

  75. SanMiguel A, Grice EA (2015) Interactions between host factors and the skin microbiome. Cell Mol Life Sci 72:1499–1515. https://doi.org/10.1007/s00018-014-1812-z

    Article  PubMed  CAS  Google Scholar 

  76. Bletz MC, Archer H, Harris RN, et al (2017) Host ecology rather than host phylogeny drives amphibian skin microbial community structure in the biodiversity hotspot of Madagascar. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01530

  77. Walke JB, Becker MH, Loftus SC et al (2014) Amphibian skin may select for rare environmental microbes. ISME J 8:2207–2217. https://doi.org/10.1038/ismej.2014.77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Varela BJ, Lesbarrères D, Ibáñez R, Green DM (2018) Environmental and host effects on skin bacterial community composition in Panamanian frogs. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00298

  79. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155. https://doi.org/10.1038/nrmicro.2017.157

    Article  PubMed  CAS  Google Scholar 

  80. Marples RR, Kligman DDT, AM, (1971) Control of free fatty acids in human surface lipids by Corynebacterium acnes. J Invest Dermatol 56:127–131

    Article  PubMed  CAS  Google Scholar 

  81. Ingham E, Holland KT, Gowland G, Cunliffe WJ (1981) Partial purification and characterization of lipase (EC 3.1.1.3) from Propionibacterium acnes. J. General Microbiol 124:393–401

    CAS  Google Scholar 

  82. Gribbon EM, Cunliffe WJ, Holland KT (1993) Interaction of Propionibacterium acnes with skin lipids in vitro. J General Microbiol 139:1745–1751

    Article  CAS  Google Scholar 

  83. Dang W, Manjakkal L, Navarah WT, Lorenzellli L, Vinciguerra V, Dahiya R (2018) Stretchable wireless system for sweat pH monitoring. Biosens Bioelectron 107:192–202

    Article  PubMed  CAS  Google Scholar 

  84. Scharschmidt TC, Fischbach MA (2013) What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech 10(3–4):e83–e89. https://doi.org/10.1016/j.ddmec.2012.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tropini C (2021) How the Physical Environment Shapes the Microbiota. mSystems. https://doi.org/10.1128/mSystems.00675-21

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhalnina K, Dias R, de Quadros PD et al (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69:395–406. https://doi.org/10.1007/s00248-014-0530-2

    Article  PubMed  CAS  Google Scholar 

  87. Yosipovitch G, Maayan-Metzger A, Merlob P, Sirota L (2000) Skin barrier properties in different body areas in neonates. Pediatrics 106:105–108. https://doi.org/10.1542/peds.106.1.105

    Article  PubMed  CAS  Google Scholar 

  88. Lambers H, Piessens S, Bloem A et al (2006) Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci 28:359–370. https://doi.org/10.1111/j.1467-2494.2006.00344.x

    Article  PubMed  CAS  Google Scholar 

  89. Schade H, Marchionini A (1928) Der Sauremantel der Haut Klin. Wochenschr 7:12–14

    Article  CAS  Google Scholar 

  90. Hoeger PH, Enzmann CC (2002) Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol 19:256–262. https://doi.org/10.1046/j.1525-1470.2002.00082.x

    Article  PubMed  Google Scholar 

  91. Ying S, Zeng D-N, Chi L et al (2015) The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLoS ONE 10:e0141842. https://doi.org/10.1371/journal.pone.0141842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Eberlein-Konig B, Schafer T, Huss-Marp J et al (2000) Skin surface pH, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children. Acta Derm Venereol 80:188–191

    Article  PubMed  CAS  Google Scholar 

  93. Sparavigna A, Setaro M, Gualandri V (1999) Cutaneous pH in children affected by atopic dermatitis and in healthy children: a multicenter study. Skin Research and Technology 5:221–227. https://doi.org/10.1111/j.1600-0846.1999.tb00134.x

    Article  Google Scholar 

  94. Prakash C, Bhargava P, Tiwari S et al (2017) Skin surface pH in acne vulgaris: insights from an observational study and review of the literature. J Clin Aesthet Dermatol 10:33–39

    PubMed  PubMed Central  Google Scholar 

  95. Kong HH (2011) Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med 17:320–328. https://doi.org/10.1016/j.molmed.2011.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gfatter R, Hackl P, Braun F (1997) Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. DRM 195:258–262. https://doi.org/10.1159/000245955

    Article  CAS  Google Scholar 

  97. Korting HC, Kobler M, Mueller M, Braun-Falco O (1987) Influence of repeated washings with soap and synthetic detergents on pH and resident flora of the skin of forehead and forearm. Results of a cross-over trial in health probationers. Acta Derm Venereol 67:41–47

    PubMed  CAS  Google Scholar 

  98. Stenzaly-Achtert S, Schölermann A, Schreiber J et al (2000) Axillary pH and influence of deodorants. Skin Res Technol 6:87–91. https://doi.org/10.1034/j.1600-0846.2000.006002087.x

    Article  PubMed  Google Scholar 

  99. Dunn RR, Amato KR, Archie EA, et al (2020) The internal, external and extended microbiomes of hominins. Front Ecol Evol 8https://doi.org/10.3389/fevo.2020.00025

  100. Charpentieer MJ, Boulet M, Drea CM (2008) Smelling right: the scent of male lemurs advertises genetic quality and relatedness. Mol Ecol 17(14):3225–3233. https://doi.org/10.1111/j.1365-294X.2008.03831.x

    Article  CAS  Google Scholar 

  101. McCall L-I, Callewaert C, Zhu Q et al (2020) Home chemical and microbial transitions across urbanization. Nat Microbiol 5:108–115. https://doi.org/10.1038/s41564-019-0593-4

    Article  PubMed  CAS  Google Scholar 

  102. McFall-Ngai M (2007) Care for the community. Nature 445:153–153. https://doi.org/10.1038/445153a

    Article  PubMed  CAS  Google Scholar 

  103. Brugman S, Schneeberger K, Witte M et al (2014) T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut. Gut Microbes 5:737–747. https://doi.org/10.4161/19490976.2014.972228

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang H, Sparks JB, Karyala SV et al (2015) Host adaptive immunity alters gut microbiota. ISME J 9:770–781. https://doi.org/10.1038/ismej.2014.165

    Article  PubMed  CAS  Google Scholar 

  105. Kawamoto S, Maruya M, Kato LM et al (2014) Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–165. https://doi.org/10.1016/j.immuni.2014.05.016

    Article  PubMed  CAS  Google Scholar 

  106. Scholz F, Badgley BD, Sadowsky MJ, Kaplan DH (2014) Immune mediated shaping of microflora community composition depends on barrier site. PLoS ONE 9:e84019. https://doi.org/10.1371/journal.pone.0084019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Yamasaki K, Gallo RL (2008) Antimicrobial peptides in human skin disease. Eur J Dermatol 18:11–21. https://doi.org/10.1684/ejd.2008.0304

    Article  PubMed  CAS  Google Scholar 

  108. Lai Y, Di Nardo A, Nakatsuji T et al (2009) Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat Med 15:1377–1382. https://doi.org/10.1038/nm.2062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Schwarz A, Bruhs A, Schwarz T (2017) The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. J Investig Dermatol 137:855–864. https://doi.org/10.1016/j.jid.2016.11.014

    Article  PubMed  CAS  Google Scholar 

  110. Hamer HM, Jonkers D, Venema K et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119. https://doi.org/10.1111/j.1365-2036.2007.03562.x

    Article  PubMed  CAS  Google Scholar 

  111. Shu M, Wang Y, Yu J et al (2013) Fermentation of propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 8:e55380. https://doi.org/10.1371/journal.pone.0055380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Logsdon AF, Erickson MA, Rhea EM et al (2018) Gut reactions: how the blood–brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood) 243:159–165. https://doi.org/10.1177/1535370217743766

    Article  CAS  Google Scholar 

  113. Chen YE, Fischbach MA, Belkaid Y (2018) Skin microbiota–host interactions. Nature 553:427–436. https://doi.org/10.1038/nature25177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nakatsuji T, Chen TH, Butcher AM et al (2018) A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv 4:eaao4502. https://doi.org/10.1126/sciadv.aao4502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wang Y, Gao H, Loyd CM et al (2012) Chronic skin-specific inflammation promotes vascular inflammation and thrombosis. J Investig Dermatol 132:2067–2075. https://doi.org/10.1038/jid.2012.112

    Article  PubMed  CAS  Google Scholar 

  116. Li W, Yosipovitch G (2020) The role of the microbiome and microbiome-derived metabolites in atopic dermatitis and non-histaminergic itch. Am J Clin Dermatol. https://doi.org/10.1007/s40257-020-00538-8

    Article  PubMed  PubMed Central  Google Scholar 

  117. Scharschmidt TC, Vasquez KS, Truong H-A et al (2015) A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43:1011–1021. https://doi.org/10.1016/j.immuni.2015.10.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Debray R, Herbert RA, Jaffe AL, et al (2021) Priority effects in microbiome assembly. Nat Rev Microbiol 1–13. https://doi.org/10.1038/s41579-021-00604-w

  119. Fukami T, Dickie IA, Wilkie JP et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. https://doi.org/10.1111/j.1461-0248.2010.01465.x

    Article  PubMed  Google Scholar 

  120. Toju H, Vannette RL, Gauthier M-PL et al (2018) Priority effects can persist across floral generations in nectar microbial metacommunities. Oikos 127:345–352. https://doi.org/10.1111/oik.04243

    Article  Google Scholar 

  121. Cheong JZA, Johnson CJ, Wan H et al (2021) Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. ISME J 15:2012–2027. https://doi.org/10.1038/s41396-021-00901-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Halliday FW, Penczykowski RM, Barrès B et al (2020) Facilitative priority effects drive parasite assembly under coinfection. Nat Ecol Evol 4:1510–1521. https://doi.org/10.1038/s41559-020-01289-9

    Article  PubMed  Google Scholar 

  123. Potnis N, Soto-Arias JP, Cowles KN et al (2014) Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl Environ Microbiol 80:3173–3180. https://doi.org/10.1128/AEM.00345-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zanvit P, Konkel JE, Jiao X et al (2015) Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun 6:8424. https://doi.org/10.1038/ncomms9424

    Article  PubMed  CAS  Google Scholar 

  125. Kennedy EA, Connolly J, Hourihane JO et al (2017) Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. Journal of Allergy and Clinical Immunology 139:166–172. https://doi.org/10.1016/j.jaci.2016.07.029

    Article  PubMed  Google Scholar 

  126. Kong HH, Oh J, Deming C et al (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859. https://doi.org/10.1101/gr.131029.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Coyte KZ, Rao C, Rakoff-Nahoum S, Foster KR (2021) Ecological rules for the assembly of microbiome communities. PLoS Biol 19:e3001116. https://doi.org/10.1371/journal.pbio.3001116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538. https://doi.org/10.3390/s120302519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Benderli NC, Ogai K, Lloyd YM et al (2019) Feasibility of microbial sample collection on the skin from people in Yaoundé, Cameroon. Drug Discoveries & Therapeutics 13:360–364. https://doi.org/10.5582/ddt.2019.01075

    Article  CAS  Google Scholar 

  130. Dimitriu PA, Iker B, Malik K et al (2019) New Insights into the Intrinsic and Extrinsic Factors That Shape the Human Skin Microbiome. mBio 10:e00839-19. https://doi.org/10.1128/mBio.00839-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Manus MB, Kuthyar S, Perroni‐Marañón AG, Núñez-de la Mora A, Amato KR (2021) Comparing different sample collection and storage methods for field-based skin microbiome research. American Journal of Human Biology n/a:e23584. https://doi.org/10.1002/ajhb.23584

  132. Meisel JS, Hannigan GD, Tyldsley AS et al (2016) Skin microbiome surveys are strongly influenced by experimental design. J Investig Dermatol 136:947–956. https://doi.org/10.1016/j.jid.2016.01.016

    Article  PubMed  CAS  Google Scholar 

  133. Ranjan R, Rani A, Metwally A et al (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469:967–977

    Article  PubMed  CAS  Google Scholar 

  134. Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544. https://doi.org/10.1126/science.aad9378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC (2008) Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Investig Dermatol 128:1728–1736. https://doi.org/10.1038/sj.jid.5701239

    Article  PubMed  CAS  Google Scholar 

  136. Stamatas GN, Nikolovski J, Mack MC, Kollias N (2011) Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies. Int J Cosmet Sci 33:17–24. https://doi.org/10.1111/j.1468-2494.2010.00611.x

    Article  PubMed  CAS  Google Scholar 

  137. Behrendt H, Green M (1955) The relationship of skin pH pattern to sexual maturation in boys. AMA Am J Dis Child 90:164–172. https://doi.org/10.1001/archpedi.1955.04030010166006

    Article  PubMed  CAS  Google Scholar 

  138. Rook GAW, Lowry CA, Raison CL (2013) Microbial ‘old friends’, immunoregulation and stress resilience. Evolution, Medicine, and Public Health 2013:46–64. https://doi.org/10.1093/emph/eot004

    Article  PubMed  PubMed Central  Google Scholar 

  139. Manus MB (2018) Evolutionary mismatch. Evolution, Medicine, and Public Health 2018:190–191. https://doi.org/10.1093/emph/eoy023

    Article  PubMed  PubMed Central  Google Scholar 

  140. Callewaert C, Ravard Helffer K, Lebaron P (2020) Skin microbiome and its interplay with the environment. Am J Clin Dermatol 21:4–11. https://doi.org/10.1007/s40257-020-00551-x

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kong HH, Andersson B, Clavel T et al (2017) Performing skin microbiome research: a method to the madness. J Investig Dermatol 137:561–568. https://doi.org/10.1016/j.jid.2016.10.033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr. Katherine Amato and Sahana Kuthyar for their continued encouragement and constructive feedback. I am grateful for the conversations, sketches, and shared passion for ecology that helped convert years of brainstorming into formal writing. I also thank the rest of the Amato Lab for reading and revising earlier versions of this manuscript, as well as two anonymous reviewers whose thorough comments resulted in significant improvements to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa B. Manus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manus, M.B. Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity. Microb Ecol 84, 689–702 (2022). https://doi.org/10.1007/s00248-021-01884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01884-8

Keywords

Navigation