Skip to main content

Short-Term Dynamics of Bdellovibrio and Like Organisms in Lake Geneva in Response to a Simulated Climatic Extreme Event


The short time-scale dynamics of three families of Bdellovibrio and like organisms (i.e. Bdellovibrionaceae, Peredibacteraceae, and Bacteriovoracaceae) were studied on the surface waters of Lake Geneva in summer. Using mesocosms deployed nearshore in July 2019, we simulated an extreme climatic event (an input of carbon from the watershed in response to runoff from the catchment, light reduction, and mixing in response to stormy conditions) and aimed to study the impact of both abiotic and biotic factors on their dynamics. The three families of Bdellovibrio and like organisms (BALOs) showed different dynamics during the experiment. Peredibacteraceae was the most abundant group, whereas Bacteriovoracaceae was the least abundant. Compared with the other two families, the abundance of Bdellovibrionaceae did not fluctuate, remaining relatively stable over time. Environmental variables only partially explained the dynamics of these families; in particular, temperature, pH, and chloride concentrations were positively correlated with Bacteriovoracaceae, Bdellovibrionaceae, and Peredibacteraceae abundance, respectively. Prokaryote-like particles (PLPs), such as those with high DNA content (HDNA), were strongly and positively correlated with Peredibacteraceae and Bacteriovoracaceae. In contrast, no relationships were found between Bdellovibrionaceae and PLP abundance, nor between the virus-like particles (VLPs) and the different BALOs. Overall, the experiment revealed that predation was stable in the face of the simulated climatic events. In addition, we observed that Peredibacteraceae and Bacteriovoracaceae share common traits, while Bdellovibrionaceae seems to constitute a distinct category.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data can be made available. It is noteworthy that two data papers have been published on the MESOLAC data ( and


  1. 1.

    Iebba V, Santangelo F, Totino V et al (2013) Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS ONE 8:e61608.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Johnke J, Fraune S, Bosch TCG et al (2020) Bdellovibrio and like organisms are predictors of microbiome diversity in distinct host groups. Microb Ecol 79:252–257.

    Article  PubMed  Google Scholar 

  3. 3.

    Hahn MW, Schmidt J, Koll U et al (2017) Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol 67:2555–2568.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Koval SF, Williams HN, Colin Stine O (2015) Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol 65:593–597.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Jurkevitch E, Davidov Y (2006) Phylogenetic diversity and evolution of predatory prokaryotes. In: Jurkevitch E (ed) Predatory prokaryotes. Microbiology monographs. Springer, Berlin, pp 11–56

    Google Scholar 

  6. 6.

    Williams HN, Li N, Scientists E (2018) Data report: exploring the presence of Bdellovibrio and like organisms in deep-sea sediment by culture-independent and culture-dependent methods. Proc Int Ocean Discov Progr 349:202

    Google Scholar 

  7. 7.

    Sutton DC, Besant PJ (1994) Ecology and characteristics of Bdellovibrios from three tropical marine habitats. Mar Biol 119:313–320.

    Article  Google Scholar 

  8. 8.

    Paix B, Ezzedine JA, Jacquet S (2019) Diversity, dynamics and distribution of Bdellovibrio and like organisms in peri-alpine lakes. Appl Environ Microbiol 85:e02494-e2518.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ezzedine JA, Chardon C, Jacquet S (2020) New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity and abundance. J Microbiol Methods 175:105996.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ezzedine JA, Jacas L, Desdevises Y, Jacquet S (2020) Bdellovibrio and like organisms in Lake Geneva: an unseen elephant in the room? Front Microbiol 11:1–14.

    Article  Google Scholar 

  11. 11.

    Ezzedine J, Pavard G, Gardillon M, Jacquet S (2020) Bdellovibrio sp.: an important bacterial predator in Lake Geneva? J Microbiol Biotechnol 5:1–11.

    Article  Google Scholar 

  12. 12.

    Williams HN, Piñeiro S (2006) Ecology of the predatory Bdellovibrio and like organisms. In: Jurkevitch E (ed) Predatory prokaryotes. Microbiology monographs. Springer, Berlin, pp 214–247

    Google Scholar 

  13. 13.

    Li H, Chen C, Sun Q et al (2014) Bdellovibrio and like organisms enhanced growth and survival of Penaeus monodon and altered bacterial community structures in its rearing water. Appl Environ Microbiol 80:6346–6354.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kandel PP, Pasternak Z, van Rijn J et al (2014) Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol 89:149–161.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Chauhan A, Fortenberry GZ, Lewis DE, Williams HN (2009) Increased diversity of predacious Bdellovibrio-like organisms (BLOs) as a function of eutrophication in Kumaon Lakes of India. Curr Microbiol 59:1–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mcallister CD, Parsons TR, Stephens K, Strickland JDH (1961) Measurements of primary production in coastal sea water using a large volume plastic sphere. Limnol Oceanogr 6:237–258

    Article  Google Scholar 

  17. 17.

    Antia NJ, McAllister CD, Parsons TR et al (1963) Further measurements of primary production using a large-volume plastic sphere. Limnol Oceanogr 8:166–183.

    Article  Google Scholar 

  18. 18.

    Egge JK, Heimdal BR (1994) Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in different N:P ratios. Sarsia 79:333–348.

    Article  Google Scholar 

  19. 19.

    Mostajir B, Demers S, De Mora S et al (1999) Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol Oceanogr 44:586–596.

    Article  Google Scholar 

  20. 20.

    Thingstad TF, Rassoulzadegan F (1999) Conceptual models for the biogeochemical role of the photic zone microbial food web, with particular reference to the Mediterranean Sea. Prog Oceanogr 44:271–286.

    Article  Google Scholar 

  21. 21.

    Jacquet S, Prieur L, Avois-Jacquet C et al (2002) Short-timescale variability of picophytoplankton abundance and cellular parameters in surface waters of the Alboran Sea (western Mediterranean). J Plankton Res 24:635–651.

    CAS  Article  Google Scholar 

  22. 22.

    Havskum H, Schlüter L, Scharek R et al (2004) Routine quantification of phytoplankton groups—microscopy or pigment analyses? Mar Ecol Prog Ser 273:31–42.

    CAS  Article  Google Scholar 

  23. 23.

    Lavell A, Oppenheimer M, Diop C et al (2012) Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change.

  24. 24.

    Jenny JP, Anneville O, Arnaud F et al (2020) Scientists’ warning to humanity: rapid degradation of the world’s large lakes. J Great Lakes Res 46:686–702.

    Article  Google Scholar 

  25. 25.

    Woolway RI, Merchant CJ (2019) Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci 12:271–276.

    CAS  Article  Google Scholar 

  26. 26.

    Gasol JM, Li Zweifel U, Peters F et al (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lebaron P, Servais P, Agogué H et al (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Tran-Khac V, Quetin P, Domaizon I et al (2020) In situ pelagic dataset from continuous monitoring: a mesocosm experiment in Lake Geneva (MESOLAC). Data Br 32:106255.

    Article  Google Scholar 

  29. 29.

    Rimet F, Anneville O, Barbet D et al (2020) The Observatory on LAkes (OLA) database: sixty years of environmental data accessible to the public. J Limnol 79:164–178.

    Article  Google Scholar 

  30. 30.

    Van Essche M, Sliepen I, Loozen G et al (2009) Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ Microbiol Rep 1:228–233.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Jacquet S, Dorigo U, Personnic S (2013) A few tests prior to flow cytometry and epifluorescence analyses of freshwater bacterio- and virioplankton communities. Flow Cytom 1:1–30

    Google Scholar 

  32. 32.

    Vaulot D, Courties C, Partensky F (1989) A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry 10:629–635

    CAS  Article  Google Scholar 

  33. 33.

    Marie D, Brussaard CPD, Thyrhaug R et al (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65:45–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at

  35. 35.

    Wickham H, Chang W, Henry L et al (2018) ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Available at

  36. 36.

    Kassambara A (2020) ggpubr: “ggplot2” Based Publication Ready Plots. Available at

  37. 37.

    Alexis Dinno A (2017) Dunn’s Test of Multiple Comparisons Using Rank Sums. pp 1–7. Available at

  38. 38.

    Wei T, Simko V, Levy M et al (2017) Visualization of a correlation matrix. Statistician 56:316–324

    Google Scholar 

  39. 39.

    Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Oksanen J, Blanchet FG, Friendly M et al (2019) Package “vegan” title community ecology package. Community Ecol Packag 2:1–297

    Google Scholar 

  41. 41.

    Havens KE, Schelske CL (2001) The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs. Environ Pollut 113:1–9.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Havens KE, Beaver JR (2011) Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668:49–60.

    CAS  Article  Google Scholar 

  43. 43.

    Havens KE, Fulton RS III, Beaver JR et al (2016) Effects of climate variability on cladoceran zooplankton and cyanobacteria in a shallow subtropical lake. J Plankton Res 38:418–430.

    CAS  Article  Google Scholar 

  44. 44.

    Perga M-E, Bruel R, Rodriguez L et al (2018) Storm impacts on alpine lakes: antecedent weather conditions matter more than the event intensity. Glob Chang Biol 24:5004–5016.

    Article  PubMed  Google Scholar 

  45. 45.

    Stockwell JD, Doubek JP, Adrian R et al (2020) Storm impacts on phytoplankton community dynamics in lakes. Glob Chang Biol 26:2756–2784.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Thayne MW, Kraemer BM, Mesman JP et al (2021) Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms. Limnol Oceanogr.

    Article  Google Scholar 

  47. 47.

    Ezzedine JA, Scheifler, Mathilde Desdevises Y, Jacquet S (2021) Exploring the diversity, abundance, structure of Bdellovibrio and like organisms in four contrasted ecosystems over a year. In Press

  48. 48.

    Ruber J, Geist J, Hartmann M et al (2018) Spatio-temporal distribution pattern of the picocyanobacterium Synechococcus in lakes of different trophic states: a comparison of flow cytometry and sequencing approaches. Hydrobiologia 811:77–92.

    Article  Google Scholar 

  49. 49.

    Stockner JG, Shortreed KS (1991) Autotrophic picoplankton: community composition, abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory Lakes. Int Rev Hydrobiol 76:581–601

    Article  Google Scholar 

  50. 50.

    Dashiff A, Junka RA, Libera M, Kadouri DE (2011) Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol 110:431–444.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Varon M, Shilo M (1968) Interaction of Bdellovibrio bacteriovorus and Host Bacteria. J Bacteriol 95:744–753

    CAS  Article  Google Scholar 

  52. 52.

    Seidler RJ, Starr MP (1969) Isolation and characterization of host-independent Bdellovibrios. J Bacteriol 100:769–785.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Roeßler M, Sewald X, Müller V (2003) Chloride dependence of growth in bacteria. FEMS Microbiol Lett 225:161–165.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Huang JCC, Starr MP (1973) Effects of calcium and magnesium ions and host viability on growth of bdellovibrios. Antonie Van Leeuwenhoek 39:151–167.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Feng S, Tan CH, Constancias F et al (2017) Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol Ecol 93:1–12.

    CAS  Article  Google Scholar 

  56. 56.

    Dolinšek J, Lagkouvardos I, Wanek W et al (2013) Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl Environ Microbiol 79:2027–2037.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sockett RE, Lambert C (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2:669–675.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Monnappa AK, Dwidar M, Mitchell RJ (2013) Application of bacterial predation to mitigate recombinant bacterial populations and their DNA. Soil Biol Biochem 57:427–435.

    CAS  Article  Google Scholar 

  59. 59.

    Schoeffield AJ, Williams HN, Turng BF, Falkler WA (1996) A comparison of the survival of intraperiplasmic and attack phase bdellovibrios with reduced oxygen. Microb Ecol 32:35–46.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 54:1439–1452.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Summers JK, Kreft J-U (2019) Predation strategies of the bacterium Bdellovibrio bacteriovorus result in overexploitation and bottlenecks. bioRxiv 44:1–36.

    Article  Google Scholar 

  62. 62.

    Santos M, Oliveira H, Pereira JL et al (2019) Flow cytometry analysis of low/high DNA content (LNA/HNA) bacteria as bioindicator of water quality evaluation. Ecol Indic 103:774–781.

    CAS  Article  Google Scholar 

  63. 63.

    Wang Y, Hammes F, Boon N et al (2009) Isolation and characterization of low nucleic acid (LNA)-content bacteria. ISME J 3:889–902.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Kankaala P, Peura S, Nykänen H et al (2010) Impacts of added dissolved organic carbon on boreal freshwater pelagic metabolism and food webs in mesocosm experiments. Fundam Appl Limnol 177:161–176.

    CAS  Article  Google Scholar 

  65. 65.

    Kim S, Kim JH, Baek SH, Kim J (2020) The influence of dissolved organic carbon on the microbial community associated with Tetraselmis striata for bio-diesel production. Appl Sci 10:3601.

    CAS  Article  Google Scholar 

  66. 66.

    Jacquet S, Havskum H, Thingstad TF, Vaulot D (2002) Effects of inorganic and organic nutrient addition on a coastal microbial community (Isefjord, Denmark). Mar Ecol Prog Ser 228:3–14.

    CAS  Article  Google Scholar 

  67. 67.

    Williams-Linera G, Ewel JJ (1984) Effect of autoclave sterilization of a tropical andept on seed germination and seedling growth. Plant Soil 82:263–268.

    CAS  Article  Google Scholar 

  68. 68.

    Guillemette F, Leigh Mccallister S, Del Giorgio PA (2016) Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria. ISME J 10:1373–1382.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Zhou L, Zhou Y, Tang X et al (2021) Resource aromaticity affects bacterial community successions in response to different sources of dissolved organic matter. Water Res 190:116776.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Striebel M, Kirchmaier L, Hingsamer P (2015) Different mixing techniques in experimental mesocosms—does mixing affect plankton biomass and community composition? Limnol Oceanogr Methods 11:176–186.

    Article  Google Scholar 

  71. 71.

    Shemesh Y, Yaacov D, Koval S, Jurkevitch E (2003) Samll eats big: ecology and diversity of Bdellovibrio and like organisms, and their dynamics in predator-prey interactions. Agronomie 23:433–439

    Article  Google Scholar 

  72. 72.

    Chen H, Athar R, Zheng G, Williams HN (2011) Prey bacteria shape the community structure of their predators. ISME J 5:1314–1322.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wilkinson MHF (2001) Predation in the presence of decoys: an inhibitory factor on pathogen control by bacteriophages or Bdellovibrios in dense and diverse ecosystems. J Theor Biol 208:27–36.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Shemesh Y, Jurkevitch E (2004) Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 6:12–18.

    Article  PubMed  Google Scholar 

  75. 75.

    Hobley L, King JR, Sockett RE (2006) Bdellovibrio predation in the presence of decoys: three-way bacterial interactions revealed by mathematical and experimental analyses. Appl Environ Microbiol 72:6757–6765.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Varon M, Shilo M (1969) Interaction of Bdellovibrio bacteriovorus and Host Bacteria. J Bacteriol 99:136–141

    CAS  Article  Google Scholar 

  77. 77.

    Hashimoto T, Diedrich DL, Conti SF (1970) Isolation of a Bacteriophage for Bdellovibrio bacteriovorus. J Virol 5:97–98

    CAS  Article  Google Scholar 

  78. 78.

    Personnic S, Domaizon I, Sime-Ngando T, Jacquet S (2009) Seasonal variations of microbial abundances and virus- versus flagellate-induced mortality of picoplankton in three peri-alpine lakes. J Plankton Res 31:1161–1177.

    Article  Google Scholar 

  79. 79.

    Jacquet S, Domaizon I, Chardon C, Personnic S (2013) Are small grazers and/or viruses a structuring factor of the free-living bacterial community in Lake Geneva? Adv Microbiol 3:233–248.

    Article  Google Scholar 

  80. 80.

    Parikka KJ, Le Romancer M, Wauters N, Jacquet S (2017) Deciphering the virus-to-prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. Biol Rev 92:1081–1100.

    Article  PubMed  Google Scholar 

Download references


The authors would like to thank all those who participated in the MESOLAC project: Laurent Espinat, Clementine Gallot, Pascal Perney, Jean-Christophe Hustache, Philippe Quetin, Viet Tran-Khac, Laura Crepin, and Mathilde Chevallay. We also thank Cécilia Barouillet and Teofana Chonova for their statistical assistance. Finally, professional scuba divers (Jean-Marc Bel, Stéphanie Kocca, Stéphan Jacquet and Eric Mocelin) are gratefully acknowledged for their help in anchoring the eco-friendly (e.g. ecological mooring) mesocosms. We would like to thank Editage ( for English language editing.


JE (PhD grant) was funded by INRAE and University Savoie-Mont Blanc. AJ (Master grant) was funded by INRAE. The MESOLAC project was funded by INRAE and ANAEE France.

Author information




JE participated to data analysis and writing. AJ helped to analyse the data. SR and ID co-organised the MESOLAC project with SJ. SJ co-organised the MESOLAC project with SR and ID, planned this study, participated to writing, and submitted the manuscript.

Corresponding author

Correspondence to S. Jacquet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 551 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ezzedine, J.A., Janicot, A., Rasconi, S. et al. Short-Term Dynamics of Bdellovibrio and Like Organisms in Lake Geneva in Response to a Simulated Climatic Extreme Event. Microb Ecol (2021).

Download citation


  • Bdellovibrio and like organisms
  • Dynamics
  • Prokaryotes
  • Lake Geneva
  • Ecological stress