Skip to main content

Understanding Responses of Soil Microbiome to the Nitrogen and Phosphorus Addition in Metasequoia glyptostroboides Plantations of Different Ages

Abstract

Nitrogen (N) and phosphorus (P) have significant effects on soil microbial community diversity, composition, and function. Also, trees of different life stages have different fertilization requirements. In this study, we designed three N additions and three P levels (5 years of experimental treatment) at two Metasequoia glyptostroboides plantations of different ages (young, 6 years old; middle mature, 24 years old) to understand how different addition levels of N and P affect the soil microbiome. Here, the N fertilization of M. glyptostroboides plantation land (5 years of experimental treatment) significantly enriched microbes (e.g., Lysobacter, Luteimonas, and Rhodanobacter) involved in nitrification, denitrification, and P-starvation response regulation, which might further lead to the decreasing in alpha diversity (especially in 6YMP soil). The P addition could impact the genes involved in inorganic P-solubilization and organic P-mineralization by increasing soil AP and TP. Moreover, the functional differences in the soil microbiomes were identified between the 6YMP and 24YMP soil. This study provides valuable information that improves our understanding on the effects of N and P input on the belowground soil microbial community and functional characteristics in plantations of different stand ages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The raw data of the sequences had been submitted to NCBI (accession number: PRJNA685784).

References

  1. 1.

    Allision SD, Lu Y, Weihe C, Goulden ML, Msrtiny AC, Treseder KK, Martiny JBH (2013) Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–724

    Article  Google Scholar 

  2. 2.

    Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Beals EW (1984) Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. In: Advances in ecological research: Elsevier. 1–55

  4. 4.

    Bending GD, Turner MK, Rayns F, Marx M-C, Wood M (2004) Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem 36:1785–1792

    CAS  Article  Google Scholar 

  5. 5.

    Bremner J (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55:11–33

    CAS  Article  Google Scholar 

  6. 6.

    Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. 7.

    Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowing DJ, Merckx R et al (2014) Soil phosphorus constrains biodiversity across European grasslands. Glob Change Biol 20:3814–3822

    Article  Google Scholar 

  10. 10.

    Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Colemana DC, Whitmanb WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497

    Article  CAS  Google Scholar 

  12. 12.

    Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S et al (2020) Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J 14:757–770

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Dai Z, Su W, Chen H, Barberan A, Zhao H, Yu M et al (2018) Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob Change Biol 24:3452–3461

    Article  Google Scholar 

  14. 14.

    Deng L, Wang G-L, Liu G-B, Shangguan Z-P (2016) Effects of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau China. Ecological Engineering 90:105–112

    Article  Google Scholar 

  15. 15.

    Ding X, Wei D, Guo W, Wang B, Meng Z, Feng R et al (2019) Biological denitrification in an anoxic sequencing batch biofilm reactor: performance evaluation, nitrous oxide emission and microbial community. Bioresource technology 285:121359

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Dixon PM (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  17. 17.

    Dong WY, Zhang XY, Liu XY, Fu XL, Chen FS, Wang HM et al (2015) Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences 12:5537–5546

    Article  Google Scholar 

  18. 18.

    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Freedman Z, Eisenlord SD, Zak DR, Xue K, He Z, Zhou J (2013) Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biol Biochem 66:130–138

    CAS  Article  Google Scholar 

  20. 20.

    Grace JB, Anderson TM, Olff H, Scheiner SM (2010) On the specification of structural equation models for ecological systems. Ecol Monogr 80:67–87

    Article  Google Scholar 

  21. 21.

    Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D et al (2012) Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 78:1039–1047

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 446:791–793

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    He D, Xiang X, He J-S, Wang C, Cao G, Adams J, Chu H (2016) Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biol Fertil Soils 52:1059–1072

    CAS  Article  Google Scholar 

  24. 24.

    Hu A, Wang J, Sun H, Niu B, Si G, Wang J et al (2020) Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments. ISME J 14:931–944

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Huang J, Hu B, Qi K, Chen W, Pang X, Bao W, Tian G (2016) Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. Eur J Soil Biol 72:35–41

    CAS  Article  Google Scholar 

  26. 26.

    Institute of soil science (1978) Soil physical and chemical analysis. Shanghai Scientific&Technical Publishers, Shanghai

    Google Scholar 

  27. 27.

    Jansson M (1988) Phosphate uptake and utilization by bacteria and algae. In: Phosphorus in Freshwater Ecosystems: Springer. 177–189

  28. 28.

    Jia S, Wang Z, Li X, Sun Y, Zhang X, Liang A (2010) N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant Soil 333:325–336

    CAS  Article  Google Scholar 

  29. 29.

    Jing T, Dungait JAJ, Xiankai L, Yunfeng Y, Hartley IP, Wei Z et al (2019) Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global change biology 25:3276–3281

    Google Scholar 

  30. 30.

    Johnston ER, Kim M, Hatt JK, Phillips JR, Yao Q, Song Y et al (2019) Phosphate addition increases tropical forest soil respiration primarily by deconstraining microbial population growth. Soil Biol Biochem 130:43–54

    CAS  Article  Google Scholar 

  31. 31.

    Józefowska A, Pietrzykowski M, Woś B, Cajthaml T, Frouz J (2017) The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 292:9–16

    Article  CAS  Google Scholar 

  32. 32.

    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Kang H, Gao H, Yu W, Yi Y, Wang Y, Ning M (2018) Changes in soil microbial community structure and function after afforestation depend on species and age: case study in a subtropical alluvial island. Sci Total Environ 625:1423–1432

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    LE OSS (1982) Phosphorus 413–414 421–422 Page AL Miller RH Keeney DR, Methods of soil analysis Part 2: Chemical and microbiological properties 2nd ed Agron. Monogr. No. 9, Amer Soc Agron Soil Sci Soc Amer Madison, WI.

  36. 36.

    LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Leff JW, Jones SE, Prober SM, Barberan A, Borer ET, Firn JL et al (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. PNAS 112:10967–10972

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv preprint arXiv:1303.3997.

  40. 40.

    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Liu C, Jin Y, Hu Y, Tang J, Xiong Q, Xu M et al (2019) Drivers of soil bacterial community structure and diversity in tropical agroforestry systems. Agr Ecosyst Environ 278:24–34

    Article  Google Scholar 

  42. 42.

    Liu L, Gundersen P, Zhang T, Mo J (2012) Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol Biochem 44:31–38

    Article  CAS  Google Scholar 

  43. 43.

    Luan J, Xiang C, Liu S, Luo Z, Gong Y, Zhu X (2010) Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain Sichuan, China. Geoderma 156:228–236

    CAS  Article  Google Scholar 

  44. 44.

    Mao Q, Lu X, Zhou K, Chen H, Zhu X, Mori T, Mo J (2017) Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. Geoderma 285:57–63

    CAS  Article  Google Scholar 

  45. 45.

    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17:10–12

    Article  Google Scholar 

  46. 46.

    McHugh TA, Morrissey EM, Mueller RC, Gallegos-Graves V, Kuske CR, Reed SC (2017) Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland. Environ Microbiol 19:1600–1611

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Nelson D, Sommers LE (1983) Total carbon, organic carbon, and organic matter, Methods of soil analysis: Part 2 chemical and microbiological properties 9: 539–579.

  48. 48.

    Nie Y, Wang M, Zhang W, Ni Z, Hashidoko Y, Shen W (2018) Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci Total Environ 624:407–415

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Pan P, Kang Q, Li X (2003) Determination of total phosphorus in soil by ammonium molybdate spectrophotometry. Chin J Spectrosc Lab 20:697–699

    Google Scholar 

  50. 50.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Patro R, Duggal G, Kingsford C (2015) Salmon: accurate, versatile and ultrafast quantification from RNA-seq data using lightweight-alignment, Biorxiv: 021592

  52. 52.

    Prakash O, Green SJ, Jasrotia P, Overholt WA, Canion A, Watson DB et al (2012) Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int J Syst Evol Microbiol 62:2457–2462

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Pywell RF, Bullock JM, Tallowin JB, Walker KJ, Warman EA, Masters G (2006) Enhancing diversity of species-poor grasslands: an experimental assessment of multiple constraints. J Appl Ecol 44:81–94

    Article  CAS  Google Scholar 

  54. 54.

    Qu Z, Liu B, Ma Y, Sun H (2020) Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees. Applied Soil Ecology 149:103515

    Article  Google Scholar 

  55. 55.

    Rosseel Y (2012) Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw 48:1–36

    Article  Google Scholar 

  56. 56.

    Sarathchandra S, Ghani A, Yeates G, Burch G, Cox N (2001) Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol Biochem 33:953–964

    CAS  Article  Google Scholar 

  57. 57.

    Sarathchandra S, Lee A, Perrott K, Rajan S, Oliver E, Gravett I (1993) Effects of phosphate fertilizer applications on microorganisms in pastoral soil. Soil Research 31:299–309

    CAS  Article  Google Scholar 

  58. 58.

    Schleuss PM, Widdig M, Heintz-Buschart A, Kirkman K, Spohn M (2020) Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant growth responses, Ecology: e03003

  59. 59.

    Segata N, Börnigen D, Morgan XC, Huttenhower C (2013) PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:1–11

    Article  CAS  Google Scholar 

  60. 60.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Shook CL, Ketchen DJ Jr, Hult GTM, Kacmar KM (2004) An assessment of the use of structural equation modeling in strategic management research. Strateg Manag J 25:397–404

    Article  Google Scholar 

  62. 62.

    Steiger JH (2007) Understanding the limitations of global fit assessment in structural equation modeling. Personality Individ Differ 42:893–898

    Article  Google Scholar 

  63. 63.

    Su JQ, Ding LJ, Xue K, Yao HY, Quensen J, Bai SJ et al (2015) Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol 24:136–150

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Sun Y, Men M, Xu B, Meng Q, Bello A, Xu X, Huang X (2019) Assessing key microbial communities determining nitrogen transformation in composting of cow manure using illumina high-throughput sequencing. Waste Manage 92:59–67

    CAS  Article  Google Scholar 

  65. 65.

    Tomarken AJ, Waller NG (2005) Structural equation modeling: strengths, limitations, and misconceptions. Annu Rev Clin Psychol 1:31–65

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manage 309:4–18

    Article  Google Scholar 

  68. 68.

    Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    CAS  Article  Google Scholar 

  69. 69.

    Wang C, Xue L, Dong Y, Hou L, Wei Y, Chen J, Jiao R (2019) The development of Chinese fir plantations undergo significant changes in soil microbial metabolic function and enzyme activities. J For Res 24:261–265

    Article  Google Scholar 

  70. 70.

    Wang J, Wang J, Wang L, Zhang H, Guo Z, Geoff Wang G et al (2019) Does stoichiometric homeostasis differ among tree organs and with tree age? Forest Ecology and Management 453:117637

    Article  Google Scholar 

  71. 71.

    Wang Q, Wang C, Yu W, Turak A, Chen D, Huang Y et al (2018) Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. Frontier in microbiology 9:1543

    Article  Google Scholar 

  72. 72.

    Wang Z, Yang S, Wang R, Xu Z, Feng K, Feng X et al (2020) Compositional and functional responses of soil microbial communities to long-term nitrogen and phosphorus addition in a calcareous grassland. Pedobiologia 78:150612

    Article  Google Scholar 

  73. 73.

    Wu T, Yu M, Wang G, Wang Z, Duan X, Dong Y, Cheng X (2012) Effects of stand structure on wind speed reduction in a Metasequoia glyptostroboides shelterbelt. Agrofor Syst 87:251–257

    Article  Google Scholar 

  74. 74.

    Wu X, Xu H, Tuo D, Wang C, Fu B, Lv Y, Liu G (2020) Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma 359:113991

    CAS  Article  Google Scholar 

  75. 75.

    Xiao C, Yang L, Zhang L, Liu C, Han M (2016) Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. J Ginseng Res 40:28–37

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Xu G, Peng J, Feng C, Fang F, Chen S, Xu Y, Wang X (2015) Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis. Appl Microbiol Biotechnol 99:6527–6536

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Yamaoka K, Nakagawa T, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 6:165–175

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Yang Q, Lei AP, Li FL, Liu LN, Zan QJ, Shin PK et al (2014) Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay China. Marine Pollution Bulletin 85:754–763

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG et al (2018) Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology & Evolution 2:499–509

    Article  Google Scholar 

  80. 80.

    Zeng J, Liu X, Song L, Lin X, Zhang H, Shen C, Chu H (2016) Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol Biochem 92:41–49

    CAS  Article  Google Scholar 

  81. 81.

    Zhang C, Song Z, Zhuang D, Wang J, Xie S, Liu G (2019) Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biol Fertil Soils 55:229–242

    CAS  Article  Google Scholar 

  82. 82.

    Zhang H, Wang J, Wang J, Guo Z, Wang GG, Zeng D, Wu T (2018) Tree stoichiometry and nutrient resorption along a chronosequence of Metasequoia glyptostroboides forests in coastal China. For Ecol Manage 430:445–450

    Article  Google Scholar 

  83. 83.

    Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Sun H et al (2018) Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME J 12:1319–1328

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Zhao Z-B, He J-Z, Quan Z, Wu C-F, Sheng R, Zhang L-M, Geisen S (2020) Fertilization changes soil microbiome functioning, especially phagotrophic protists, Soil Biology and Biochemistry: 107863

  85. 85.

    Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2009) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511–522

    Article  CAS  Google Scholar 

  86. 86.

    Zhu L, Wu Q, Deng C, Zhang M, Zhang C, Chen H et al (2018) Adaptive evolution to a high purine and fat diet of carnivorans revealed by gut microbiomes and host genomes. Environ Microbiol 20:1711–1722

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the worker in the Yellow Sea Park for the sample collection.

Funding

This work was supported by the National Natural Science Foundation of China (31770756) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Affiliations

Authors

Contributions

TW, JW, and LZ conceived the project. LW, YX, RT, and HZ collected the samples. LW performed the experiments. LW, HC, TH, and GL analyzed the data. LZ, TW, and JW wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Lifeng Zhu or Tonggui Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1495 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wen, Y., Tong, R. et al. Understanding Responses of Soil Microbiome to the Nitrogen and Phosphorus Addition in Metasequoia glyptostroboides Plantations of Different Ages. Microb Ecol (2021). https://doi.org/10.1007/s00248-021-01863-z

Download citation

Keywords

  • Tree ages
  • Nitrogen and phosphorus addition
  • Soil microbial response
  • Strain level