Skip to main content

Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges

Abstract

The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth’s greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60–70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. 1.

    World Wildlife Fund (2012) Wildfinder. https://www.worldwildlifeorg/science/wildfinder/ Accessed 10 August 2012

  2. 2.

    Olson DM, Dinerstein E (2002) The Global 200: priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224. https://doi.org/10.2307/3298564

    Article  Google Scholar 

  3. 3.

    Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530. https://doi.org/10.1111/j.1523-1739.2009.01237.x

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Torsvik V, Øvreås L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 15–43. https://doi.org/10.1007/978-3-540-74231-9_2

    Chapter  Google Scholar 

  5. 5.

    Franzetti A, Pittino F, Gandolfi I, Azzoni R, Diolaiuti G, Smiraglia C, Pelfini M, Compostella C, Turchetti B, Buzzini P (2020) Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiol Ecol 96:fiaa165. https://doi.org/10.1093/femsec/fiaa165

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Yadav AN, Rastegari AA, Yadav N (2020) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press Taylor & Francis, Boca Raton USA

    Google Scholar 

  7. 7.

    Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK (2021) Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal Agric Biotechnol 33:102009. https://doi.org/10.1016/j.bcab.2021.102009

  8. 8.

    Joshi D, Kumar S, Suyal DC, Goel R (2017) The Microbiome of the Himalayan Ecosystem. In: Kalia VC, Shouche Y, Purohit HJ, Rahi P (eds) Mining of Microbial Wealth and MetaGenomics. Springer Singapore, Singapore, pp 101–116. https://doi.org/10.1007/978-981-10-5708-3_6

    Chapter  Google Scholar 

  9. 9.

    Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4. https://doi.org/10.19080/AIBM.2017.02.555584

    Article  Google Scholar 

  10. 10.

    Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 387–402.  https://doi.org/10.1007/978-981-15-6949-4_16

  11. 11.

    Wikramanayake ED, Dinerstein E, Loucks CJ (2002) Terrestrial ecoregions of the Indo-Pacific: a conservation assessment. Island Press

    Google Scholar 

  12. 12.

    Bhatt JP, Manish K, Pandit MK (2012) Elevational gradients in fish diversity in the Himalaya: water discharge is the key driver of distribution patterns. PLoS ONE 7:e46237. https://doi.org/10.1371/journal.pone.0046237

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hamilton L (2002) Why mountain matters. World Conservation: The IUCN Bulletin 1/2002

  14. 14.

    Körner C (2004) Mountain biodiversity, its causes and function. J Hum Environ 33:11–17. https://doi.org/10.1007/0044-7447-33.sp13.11

    Article  Google Scholar 

  15. 15.

    Kollmair M, Gurung GS, Hurni K, Maselli D (2005) Mountains: special places to be protected? An analysis of worldwide nature conservation efforts in mountains. Int J Biodiversity Sci Manag 1:181–189. https://doi.org/10.1080/17451590509618091

    Article  Google Scholar 

  16. 16.

    Roy P, Kushwaha S, Murthy M, Roy A, Kushwaha D, Reddy C, Behera M, Mathur V, Padalia H, Saran S (2012) Biodiversity characterisation at landscape level: national assessment. Indian institute of remote sensing, Dehra Dun: Indian Institute of Remote Sensing. ISBN 81–901418–8–0.

  17. 17.

    Messerli B, Ives JD (1997) Mountains of the world: a global priority. Parthenon Publishing Group

  18. 18.

    Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12:2775–2786. https://doi.org/10.1175/1520-0442(1999)012%3c2775:MTTITH%3e2.0.CO;2

    Article  Google Scholar 

  19. 19.

    Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient. Nepal Am Nat 159:294–304

    Article  Google Scholar 

  20. 20.

    Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. Bot Rev 53:80–192. https://doi.org/10.1007/BF02858183

    Article  Google Scholar 

  21. 21.

    Shekhar M, Chand H, Kumar S, Srinivasan K, Ganju A (2010) Climate-change studies in the western Himalaya. Ann Glaciol 51:105–112. https://doi.org/10.3189/172756410791386508

    Article  Google Scholar 

  22. 22.

    Alley KD (2012) Water wealth and energy in the Indian Himalayas. The Silk Road 10:136–145

    Google Scholar 

  23. 23.

    Chalise S (2001) An introduction to climate, hydrology, and landslide hazards in the Hindu Kush Himalayan region. Landslide Hazard Mitigation in the Hindu Kush Himalayas, ICIMOD, Kathmandu

  24. 24.

    Billings WD (1952) The environmental complex in relation to plant growth and distribution. Q Rev Biol 27:251–265. https://doi.org/10.1086/399022

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Heady HF (1958) Vegetational changes in the California annual type. Ecology 39:402–416. https://doi.org/10.2307/1931750

    Article  Google Scholar 

  26. 26.

    Mishra D, Mishra T, Banerjee S (1997) Comparative phytosociological and soil physico-chemical aspects between managed and unmanaged lateritic land. Ann For 5:16–25

    Google Scholar 

  27. 27.

    Ramachandran RM, Roy P (2018) Vegetation response to climate change in Himalayan hill range: a remote sensing perspective. In: Das A, Bera S (eds) Plant Diversity in the Himalaya Hotspot Region, vol I. Bishen Singh Mahendra Pal Singh, Dehradun, pp 369–392

    Google Scholar 

  28. 28.

    Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund. Arctic Cryobiology 68:122–128. https://doi.org/10.1016/j.cryobiol.2014.01.006

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Wolfe JA (1979) Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australasia. US Geol Surv Prof Paper 1106:1–37

    Google Scholar 

  30. 30.

    Singh SP, Adhikari BS, Zobel DB (1994) Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. Ecological Monogr 64:401–421. https://doi.org/10.2307/2937143

    Article  Google Scholar 

  31. 31.

    Singh S (2014) Attributes of Himalayan forest ecosystems: they are not temperate forests. Proc Indian Natl Sci Acad 80:221–233. https://doi.org/10.16943/ptinsa/2014/v80i2/55103

    Article  Google Scholar 

  32. 32.

    Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS et al (2015) New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159. https://doi.org/10.1016/j.jag.2015.03.003

    Article  Google Scholar 

  33. 33.

    Rana SK, Rawat GS (2017) Database of Himalayan plants based on published floras during a century. Data 2:1–9. https://doi.org/10.3390/data2040036

    Article  Google Scholar 

  34. 34.

    Samant SS, Dhar U, Palni LMS (1998) Medicinal plants of Indian Himalaya. Gyanodaya Prakashan, Nainital, p 163

  35. 35.

    Das AP, Bera S (2018) Plant diversity in the Himalaya hotspot region. Bishen Singh Mahendra Pal Singh, Dehradun.

  36. 36.

    Cornelissen JH, Cornwell WK (2014) The tree of life in ecosystems: evolution of plant effects on carbon and nutrient cycling. J Ecol 102:269–274. https://doi.org/10.1111/1365-2745.12217

    Article  Google Scholar 

  37. 37.

    Narayana VD (1987) Downstream impacts of soil conservation in the Himalayan region. Mt Res Dev 7:287–298. https://doi.org/10.2307/3673207

    Article  Google Scholar 

  38. 38.

    Baligar VC, Fageria NK, Eswaran H, Wilson MJ, He Z (2004) Nature and properties of red soils of the world. In: Wilson MJ, He Z, Yang X (eds) The red soils of China: Their Nature, Management and Utilization. Springer, Netherlands, Dordrecht, pp 7–27. https://doi.org/10.1007/978-1-4020-2138-1_2

    Chapter  Google Scholar 

  39. 39.

    Sharma SKMP, Ramesh A, Joshi OP (2011) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22:352–359. https://doi.org/10.4014/jmb.1106.05063

    CAS  Article  Google Scholar 

  40. 40.

    Vasu D, Tiwary P, Chandran P, Singh SK (2020) Soil quality for sustainable agriculture. In: Meena RS (ed) Nutrient dynamics for sustainable crop production. Springer Singapore, Singapore, pp 41–66. https://doi.org/10.1007/978-981-13-8660-2_2

    Chapter  Google Scholar 

  41. 41.

    Baghel V, Tripathi R, Ramteke P, Gopal K, Dwivedi S, Jain R, Rai U, Singh S (2005) Psychrotrophic proteolytic bacteria from cold environment of Gangotri glacier, western Himalaya, India. Enzyme Microb Technol 36:654–659. https://doi.org/10.1016/j.enzmictec.2004.09.005

    CAS  Article  Google Scholar 

  42. 42.

    Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-Alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107. https://doi.org/10.1007/s00284-006-4590-5

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Mahejibin K, Patel C (2007) Plant growth promoting effect of Bacillus firmus strain NARS1 isolated from Central Himalayan region of India on Cicer arientnum at low temperature. Egypt Afr Crop Sci Soc 8:1179–1181

  44. 44.

    Chatli AS, Beri V, Sidhu B (2008) Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian J Microbiol 48:267–273. https://doi.org/10.1007/s12088-008-0037-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245. https://doi.org/10.2478/s11756-009-0041-7

    CAS  Article  Google Scholar 

  46. 46.

    Pradhan S, Srinivas T, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha M, Yasala AK, Reddy G (2010) Bacterial biodiversity from Roopkund glacier, Himalayan mountain ranges, India. Extremophiles 14:377–395. https://doi.org/10.1007/s00792-010-0318-3

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Shivaji S, Pratibha M, Sailaja B, Kishore KH, Singh AK, Begum Z, Anarasi U, Prabagaran S, Reddy G, Srinivas T (2011) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15:1–22. https://doi.org/10.1007/s00792-010-0333-4

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Kuddus M, Roohi S, Ahmad IZ (2012) Cold-active extracellular α-amylase production from novel bacteria Microbacterium foliorum GA2 and Bacillus cereus GA6 isolated from Gangotri glacier, western Himalaya. J Genet Eng Biotechnol 10:151–159. https://doi.org/10.1016/j.jgeb.2012.03.002

    CAS  Article  Google Scholar 

  49. 49.

    Joseph B, Shrivastava N, Ramteke PW (2012) Extracellular cold-active lipase of Microbacterium luteolum isolated from Gangotri glacier, western Himalaya: Isolation, partial purification and characterization. J Genet Eng Biotechnol 10:137–144. https://doi.org/10.1016/j.jgeb.2012.02.001

    CAS  Article  Google Scholar 

  50. 50.

    Aschenbach K, Conrad R, Řeháková K, Doležal J, Janatková K, Angel R (2013) Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the western Himalayas. Front Microbiol 4:1–14. https://doi.org/10.3389/fmicb.2013.00359

    Article  Google Scholar 

  51. 51.

    Suyal DC, Yadav A, Shouche Y, Goel R (2014) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68:543–550. https://doi.org/10.1007/s00284-013-0508-1

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Arya M, Joshi GK, Gupta AK, Kumar A, Raturi A (2015) Isolation and characterization of thermophilic bacterial strains from Soldhar (Tapovan) hot spring in Central Himalayan Region, India. Ann Microbiol 65:1457–1464. https://doi.org/10.1007/s13213-014-0984-y

    CAS  Article  Google Scholar 

  54. 54.

    Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307. https://doi.org/10.1002/jobm.201500230

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, Hasan F (2017) Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier. Pakistan PloS One 12:e0178180. https://doi.org/10.1371/journal.pone.0178180

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11. https://doi.org/10.1007/s13205-017-0762-1

    Article  Google Scholar 

  57. 57.

    Hassan N, Hasan F, Nadeem S, Hayat M, Ali P, Khan M, Sajjad W, Zada S, Rafiq M (2018) Community analysis and characterization of fungi from Batura glacier, Karakoram mountain range, Pakistan. Appl Ecol Environ Res 16:5323–5341. https://doi.org/10.15666/aeer/1605_53235341

    Article  Google Scholar 

  58. 58.

    Ali B, Sajjad W, Ghimire PS, Shengyun C, Minghui W, Kang S (2019) Culture-dependent diversity of bacteria from Laohugou glacier, Qilian Mts., China and their resistance against metals. J Basic Microbiol 59:1065–1081

    CAS  Article  Google Scholar 

  59. 59.

    Gupta V, Singh I, Rasool S, Verma V (2020) Next generation sequencing and microbiome’s taxonomical characterization of frozen soil of north western Himalayas of Jammu and Kashmir, India. Elect J Biotechnol 45:30–37. https://doi.org/10.1016/j.ejbt.2020.03.003

    CAS  Article  Google Scholar 

  60. 60.

    Guleria S, Jain R, Singh D, Kumar S (2021) A thermostable Fe/Mn SOD of Geobacillus sp. PCH100 isolated from glacial soil of Indian trans-Himalaya exhibits activity in the presence of common inhibitors. Int J Biol Macromol 179:576–585. https://doi.org/10.1016/j.ijbiomac.2021.03.019

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Bowman JP, Nichols CM, Gibson JA (2003) Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. J Med Microbiol 53:1343–1355. https://doi.org/10.1099/ijs.0.02553-0

    CAS  Article  Google Scholar 

  62. 62.

    Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59. https://doi.org/10.1007/s00792-009-0286-7

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55:1471–1486. https://doi.org/10.1099/ijs.0.63527-0

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Yurkov A, Sannino C, Turchetti B (2020) Mrakia fibulata sp. nov., a psychrotolerant yeast from temperate and cold habitats. Antonie Van Leeuwenhoek 113:499–510. https://doi.org/10.1007/s10482-019-01359-4

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Turchetti B, Selbmann L, Blanchette RA, Di Mauro S, Marchegiani E, Zucconi L, Arenz BE, Buzzini P (2015) Cryptococcus vaughanmartiniae sp. nov. and Cryptococcus onofrii sp. nov.: two new species isolated from worldwide cold environments. Extremophiles 19:149–159. https://doi.org/10.1007/s00792-014-0692-3

    Article  PubMed  Google Scholar 

  66. 66.

    Knoblauch C, Sahm K, Jørgensen BB (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Evol Microbiol 49:1631–1643. https://doi.org/10.1099/00207713-49-4-1631

    CAS  Article  Google Scholar 

  67. 67.

    Bowman JP, McCammon SA, Brown JL, McMeekin TA (1998) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Evol Microbiol 48:1213–1222. https://doi.org/10.1099/00207713-48-4-1213

    Article  Google Scholar 

  68. 68.

    Denner EB, Mark B, Busse H-J, Turkiewicz M, Lubitz W (2001) Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst Appl Microbiol 24:44–53. https://doi.org/10.1078/0723-2020-00006 (Get rights and content)

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277. https://doi.org/10.1007/s002030000140

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N, Nakano K, Matsumura M (2003) Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53:519–526. https://doi.org/10.1099/ijs.0.02369-0

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL, Nichols DS, McMeekin TA (1998) Psychroflexus torquis gen. nov., sp. nov. a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:1601–1609. https://doi.org/10.1099/00221287-144-6-1601

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Yumoto I, Iwata H, Sawabe T, Ueno K, Ichise N, Matsuyama H, Okuyama H, Kawasaki K (1999) Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl Environ Microbiol 65:67–72. https://doi.org/10.1128/AEM.65.1.67-72.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Margesin R, Schumann P, Spröer C, Gounot A-M (2004) Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072. https://doi.org/10.1099/ijs.0.63124-0

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Männistö MK, Tiirola M, McConnell J, Häggblom MM (2010) Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 60:2849–2856. https://doi.org/10.1099/ijs.0.019364-0

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Kashefi K, Tor JM, Holmes DE, Van Praagh CVG, Reysenbach A-L, Lovley DR (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe (III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728. https://doi.org/10.1099/00207713-52-3-719

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Kiran S, Swarnkar MK, Mayilraj S, Tewari R, Gulati A (2017) Paenibacillus ihbetae sp. nov., a cold-adapted antimicrobial producing bacterium isolated from high altitude Suraj Tal Lake in the Indian trans-Himalayas. Syst Appl Microbiol 40:430–439. https://doi.org/10.1016/j.syapm.2017.07.005

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Kube M, Chernikova TN, Al-Ramahi Y, Beloqui A, Lopez-Cortez N, Guazzaroni M-E, Heipieper HJ, Klages S, Kotsyurbenko OR, Langer I (2013) Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nat Commun 4:1–11. https://doi.org/10.1038/ncomms3156

    CAS  Article  Google Scholar 

  78. 78.

    Asaf S, Khan AL, Khan MA, Al-Harrasi A, Lee I-J (2018) Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth. 3 Biotech 8:1–14. https://doi.org/10.1007/s13205-018-1403-z

    Article  Google Scholar 

  79. 79.

    Sorokin DY, Yakimov M, Messina E, Merkel AY, Bale NJ, Damsté JSS (2019) Natronolimnobius sulfurireducens sp. nov. and Halalkaliarchaeum desulfuricum gen. nov., sp. nov., the first sulfur-respiring alkaliphilic haloarchaea from hypersaline alkaline lakes. Int J Syst Evol Microbiol 69:2662–2673. https://doi.org/10.1099/ijsem.0.003506

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Holochová P, Mašlaňová I, Sedláček I, Švec P, Králová S, Kovařovic V, Busse H-J, Staňková E, Barták M, Pantůček R (2020) Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst Appl Microbiol 43:126112. https://doi.org/10.1016/j.syapm.2020.126112

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Chaudhary DK, Dahal RH, Kim D-U, Kim J (2020) Flavobacterium sandaracinum sp. nov., Flavobacterium caseinilyticum sp. nov., and Flavobacterium hiemivividum sp. nov., novel psychrophilic bacteria isolated from Arctic soil. Int J Syst Evol Microbiol 70:2269–2280. https://doi.org/10.1099/ijsem.0.004031

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:1–12. https://doi.org/10.1186/gb-2012-13-5-r39

    CAS  Article  Google Scholar 

  83. 83.

    Abraham WP, Raghunandanan S, Gopinath V, Suryaletha K, Thomas S (2020) Deciphering the cold adaptive mechanisms in Pseudomonas psychrophila MTCC12324 isolated from the Arctic at 79 N. Curr Microbiol 77:2345–2355. https://doi.org/10.1007/s00284-020-02006-2

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Kumar R, Acharya V, Mukhia S, Singh D, Kumar S (2019) Complete genome sequence of Pseudomonas frederiksbergensis ERDD5: 01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics 111:492–499. https://doi.org/10.1016/j.ygeno.2018.03.008

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Kumar R, Acharya V, Singh D, Kumar S (2018) Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5: 01. Stand Genomic Sci 13:1–13. https://doi.org/10.1186/s40793-018-0313-3

    CAS  Article  Google Scholar 

  86. 86.

    Abdel-Mageed WM, Lehri B, Jarmusch SA, Miranda K, Al-Wahaibi LH, Stewart HA, Jamieson AJ, Jaspars M, Karlyshev AV (2020) Whole genome sequencing of four bacterial strains from South Shetland Trench revealing biosynthetic and environmental adaptation gene clusters. Mar Genomics 54:100782. https://doi.org/10.1016/j.margen.2020.100782

    Article  PubMed  Google Scholar 

  87. 87.

    Goordial J, Raymond-Bouchard I, Zolotarov Y, de Bethencourt L, Ronholm J, Shapiro N, Woyke T, Stromvik M, Greer CW, Bakermans C (2016) Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/femsec/fiv154

    CAS  Article  Google Scholar 

  88. 88.

    Math RK, Jin HM, Kim JM, Hahn Y, Park W, Madsen EL, Jeon CO (2012) Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7:e35784. https://doi.org/10.1371/journal.pone.0035784

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035. https://doi.org/10.1038/ismej.2009.45

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Guo Y, Wang Y, Zhang Z, Huang F, Chen S (2018) Physiological and transcriptomic insights into the cold adaptation mechanism of a novel heterotrophic nitrifying and aerobic denitrifying-like bacterium Pseudomonas indoloxydans YY-1. Int Biodeterior Biodegrad 134:16–24. https://doi.org/10.1016/j.ibiod.2018.08.001

    CAS  Article  Google Scholar 

  91. 91.

    Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:1–17. https://doi.org/10.1186/1471-2164-9-547

    CAS  Article  Google Scholar 

  92. 92.

    Bierne H, Cossart P (2007) Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 71:377–397. https://doi.org/10.1128/MMBR.00039-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, Kawarabayasi Y, Donachie SP, Pikina A, Galperin MY, Koonin EV (2004) Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci 101:18036–18041. https://doi.org/10.1073/pnas.0407638102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335. https://doi.org/10.1101/gr.4126905

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson LS (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:1–19. https://doi.org/10.1186/1471-2164-9-210

    CAS  Article  Google Scholar 

  96. 96.

    Huan R, Huang J, Liu D, Wang M, Liu C, Zhang Y, Yi C, Xiao D, He H (2019) Genome sequencing of Mesonia algae K4–1 reveals its adaptation to the Arctic ocean. Front Microbiol 10:1–14. https://doi.org/10.3389/fmicb.2019.02812

    CAS  Article  Google Scholar 

  97. 97.

    Singh P, Kapse N, Arora P, Singh SM, Dhakephalkar PK (2015) Draft genome of Cryobacterium sp. MLB-32, an obligate psychrophile from glacier cryoconite holes of high Arctic. Mar genomics 21:25–26. https://doi.org/10.1016/j.margen.2015.01.006

    Article  PubMed  Google Scholar 

  98. 98.

    Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S (2015) Complete genome sequence of Arthrobacter sp. ERGS1: 01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India. J Biotechnol 214:139–140. https://doi.org/10.1016/j.jbiotec.2015.09.025

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Wang G-x, Gao Y, Hu B, Lu X-l, Liu X-y, Jiao B-h (2013) A novel cold-adapted β-galactosidase isolated from Halomonas sp. S62: gene cloning, purification and enzymatic characterization. World J Microbiol Biotechnol 29:1473–1480. https://doi.org/10.1007/s11274-013-1311-7

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Shen L, Liu Y, Wang N, Adhikari NP (2019) Genomic insights of Dyadobacter tibetensis Y620–1 isolated from ice core reveal genomic features for succession in glacier environment. Microorganisms 7:1–12. https://doi.org/10.3390/microorganisms7070211

    CAS  Article  Google Scholar 

  101. 101.

    Kumar V, Thakur V, Kumar V, Kumar R, Singh D (2020) Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics 112:637–646. https://doi.org/10.1016/j.ygeno.2019.04.016

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Liu Q, Liu H-C, Zhou Y-G, Xin Y-H (2019) Microevolution and adaptive strategy of psychrophilic species Flavobacterium bomense sp. nov. isolated from glaciers. Front Microbiol 10:1–12. https://doi.org/10.3389/fmicb.2019.01069

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Singh P, Kapse N, Roy U, Singh SM, Dhakephalkar P (2017) Draft genome sequence of permafrost bacterium Nesterenkonia sp. strain PF2B19, revealing a cold adaptation strategy and diverse biotechnological potential. Genome Announc 5:1–2. https://doi.org/10.1128/genomeA.00133-17

    Article  Google Scholar 

  104. 104.

    Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M (2008) Comparative genome analysis of Salmonella enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18:1624–1637. https://doi.org/10.1101/gr.077404.108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Lee H, Popodi E, Tang H, Foster PL (2012) Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci 109:E2774–E2783. https://doi.org/10.1073/pnas.1210309109

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Su Y, Jiang X, Wu W, Wang M, Hamid MI, Xiang M, Liu X (2016) Genomic, transcriptomic, and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3: Genes Genomes, Genetics 6:3603–3613. https://doi.org/10.1534/g3.116.033308

    CAS  Article  Google Scholar 

  107. 107.

    Moghadam MS, Albersmeier A, Winkler A, Cimmino L, Rise K, Hohmann-Marriott MF, Kalinowski J, Rückert C, Wentzel A, Lale R (2016) Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics 17:1–14. https://doi.org/10.1186/s12864-016-2445-4

    CAS  Article  Google Scholar 

  108. 108.

    Kwon YW, Bae J-H, Kim S-A, Han NS (2018) Development of freeze-thaw tolerant Lactobacillus rhamnosus GG by adaptive laboratory evolution. Front Microbiol 9:1–10. https://doi.org/10.3389/fmicb.2018.02781

    Article  Google Scholar 

  109. 109.

    Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271–281. https://doi.org/10.1007/s00792-013-0614-9

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Kashkak ES, Kataev VY, Khlopko YA, Budagaeva VG, Danilova EV, Oorzhak US, Dagurova OP, Plotnikov AO (2020) Data on draft genome sequence of Stenotrophomonas sp. SAM-B isolated from a mineral cold spring located in Tyva Southern Siberia. Data Brief 32:106278. https://doi.org/10.1016/j.dib.2020.106278

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469. https://doi.org/10.1038/nrmicro1158

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, High quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11 (1):54. https://doi.org/10.1186/s40793-016-0176-4

    Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Lin H, Yu M, Wang X, Zhang X-H (2018) Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics 19:1–14. https://doi.org/10.1186/s12864-018-4531-2

    CAS  Article  Google Scholar 

  114. 114.

    Barrick JE, Lenski RE (2009) Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harb Symp Quant Biol 74:119–129. https://doi.org/10.1101/sqb.2009.74.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Miller CR, Joyce P, Wichman HA (2011) Mutational effects and population dynamics during viral adaptation challenge current models. Genetics 187:185–202. https://doi.org/10.1534/genetics.110.121400

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM (2011) Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet 7:e1001336. https://doi.org/10.1371/journal.pgen.1001336

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Giordano D, Parrilli E, Dettaï A, Russo R, Barbiero G, Marino G, Lecointre G, di Prisco G, Tutino L, Verde C (2007) The truncated hemoglobins in the Antarctic psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Gene 398:69–77. https://doi.org/10.1016/j.gene.2007.02.037

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Zhang G, Chen T, Chang S, Zhang W, Wu X, Wu M, Wang Y, Long H, Chen X, Wang Y (2016) Complete genome sequence of Acinetobacter sp. TTH0-4, a cold-active crude oil degrading strain isolated from Qinghai-Tibet Plateau. J Biotechnol 226:54–55. https://doi.org/10.1016/j.jbiotec.2016.03.018

    CAS  Article  PubMed  Google Scholar 

  119. 119.

    Peng T, Ma L, Feng X, Tao J, Nan M, Liu Y, Li J, Shen L, Wu X, Yu R (2017) Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS ONE 12:e0178008. https://doi.org/10.1371/journal.pone.0178008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650. https://doi.org/10.1101/gr.190201

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Shen L, Liu Y, Xu B, Wang N, Zhao H, Liu X, Liu F (2017) Comparative genomic analysis reveals the environmental impacts on two Arcticibacter strains including sixteen Sphingobacteriaceae species. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-02191-4

    CAS  Article  Google Scholar 

  122. 122.

    Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935. https://doi.org/10.1093/nar/gkf526

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xiao M, Li WJ (2017) Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol 74:116–127. https://doi.org/10.1007/s00248-017-0930-1

    Article  PubMed  Google Scholar 

  124. 124.

    Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31:157–165. https://doi.org/10.1007/BF02705244

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Zeeb M, Max KE, Weininger U, Löw C, Sticht H, Balbach J (2006) Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution. Nucleic Acids Res 34:4561–4571. https://doi.org/10.1093/nar/gkl376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M, Korkeala H (2016) Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front Microbiol 7:1–7. https://doi.org/10.3389/fmicb.2016.01151

    Article  Google Scholar 

  127. 127.

    Latha PK, Soni R, Khan M, Marla SS, Goel R (2009) Exploration of Csp genes from temperate and glacier soils of the Indian Himalayas and in silico analysis of encoding proteins. Curr Microbiol 58:343. https://doi.org/10.1007/s00284-008-9344-0

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Bisht SC, Joshi GK, Mishra PK (2014) CspA encodes a major cold shock protein in Himalayan psychrotolerant Pseudomonas strains. Interdiscip Sci Comput Life Sci 6:140–148. https://doi.org/10.1007/s12539-013-0015-x

    CAS  Article  Google Scholar 

  129. 129.

    Kumar V, Thakur V, Ambika KV, Kumar R, Singh D (2020) Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics 112:637–646. https://doi.org/10.1016/j.ygeno.2019.04.016

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136. https://doi.org/10.21775/cimb.006.125

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Suyal DC, Kumar S, Yadav A, Shouche Y, Goel R (2017) Cold stress and nitrogen deficiency affected protein expression of psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1. Front Microbiol 8:1–6. https://doi.org/10.3389/fmicb.2017.00430

    Article  Google Scholar 

  132. 132.

    Suyal DC, Kumar S, Joshi D, Soni R, Goel R (2018) Quantitative proteomics of psychotrophic diazotroph in response to nitrogen deficiency and cold stress. J Proteom 187:235–242. https://doi.org/10.1016/j.jprot.2018.08.005

    CAS  Article  Google Scholar 

  133. 133.

    Suyal DC, Joshi D, Kumar S, Soni R, Goel R (2019) Differential protein profiling of soil diazotroph Rhodococcus qingshengii S10107 towards low-temperature and nitrogen deficiency. Sci Rep 9:1–9. https://doi.org/10.3389/fmicb.2021.637815

    Article  Google Scholar 

  134. 134.

    Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2020) Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress. Cell Stress Chaperones 25:1025–1032. https://doi.org/10.1007/s12192-020-01139-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Kawahara H (2017) Cryoprotectants and ice-binding proteins. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology. Springer International Publishing, Cham, pp 237–257. https://doi.org/10.1007/978-3-319-57057-0_11

    Chapter  Google Scholar 

  136. 136.

    Lorv JS, Rose DR, Glick BR (2014) Bacterial ice crystal controlling proteins. Scientifica 2014:1–20. https://doi.org/10.1155/2014/976895

    Article  Google Scholar 

  137. 137.

    Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180. https://doi.org/10.1099/mic.0.26610-0

    CAS  Article  PubMed  Google Scholar 

  138. 138.

    Bisht SC, Joshi GK, Haque S, Mishra PK (2013) Cryotolerance strategies of Pseudomonads isolated from the rhizosphere of Himalayan plants. Springerplus 2:1–13. https://doi.org/10.1186/2193-1801-2-667

    CAS  Article  Google Scholar 

  139. 139.

    Chattopadhyay MK, Raghu G, Sharma YVRK, Biju AR, Rajasekharan MV, Shivaji S (2011) Increase in oxidative stress at low temperature in an Antarctic Bacterium. Curr Microbiol 62:544–546. https://doi.org/10.1007/s00284-010-9742-y

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Dhakar K, Pandey A (2020) Microbial ecology from the himalayan cryosphere perspective. Microorganisms 8:1–17. https://doi.org/10.3390/microorganisms8020257

    Article  Google Scholar 

  141. 141.

    Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361. https://doi.org/10.1016/j.resmic.2010.12.004

    Article  PubMed  Google Scholar 

  142. 142.

    Lee C, Jang S-H, Chung H-S (2017) Improving the stability of cold-adapted enzymes by immobilization. Catalysts 7:1–12. https://doi.org/10.3390/catal7040112

    CAS  Article  Google Scholar 

  143. 143.

    Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10. https://doi.org/10.1016/S0167-4838(00)00210-7

    CAS  Article  PubMed  Google Scholar 

  144. 144.

    Pandey A, Dhakar K, Sharma A, Priti P, Sati P, Kumar B (2015) Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 C) and Ringigad (80 C) hot springs of Uttarakhand, India. Ann Microbiol 65:809–816. https://doi.org/10.1007/s13213-014-0921-0

    CAS  Article  Google Scholar 

  145. 145.

    Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012:1–6. https://doi.org/10.1155/2012/789652

    CAS  Article  Google Scholar 

  146. 146.

    Trivedi S, Rao SR, Gehlot HS (2005) Nucleic acid stability in thermophilic prokaryotes: a review. J Cell Mol Biol 4:61–69

    Google Scholar 

  147. 147.

    Roncarati D, Scarlato V (2017) Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 41:549–574. https://doi.org/10.1093/femsre/fux015

    CAS  Article  PubMed  Google Scholar 

  148. 148.

    Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Radestock S, Gohlke H (2011) Protein rigidity and thermophilic adaptation. Proteins 79:1089–1108. https://doi.org/10.1002/prot.22946

    CAS  Article  PubMed  Google Scholar 

  150. 150.

    Esteves AM, Chandrayan SK, McTernan PM, Borges N, Adams MW, Santos H (2014) Mannosylglycerate and di-myo-inositol phosphate have interchangeable roles during adaptation of Pyrococcus furiosus to heat stress. Appl Environ Microbiol 80:4226–4233. https://doi.org/10.1128/AEM.00559-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Anesio AM, Lutz S, Chrismas NA, Benning LG (2017) The microbiome of glaciers and ice sheets. NPJ Biofilms And Microbiomes 3:1–11. https://doi.org/10.1038/s41522-017-0019-0

    Article  Google Scholar 

  152. 152.

    Gangwar P, Alam SI, Bansod S, Singh L (2009) Bacterial diversity of soil samples from the western Himalayas, India. Can J Microbiol 55:564–577. https://doi.org/10.1139/W09-011

    CAS  Article  PubMed  Google Scholar 

  153. 153.

    Uribe-Lorío L, Brenes-Guillén L, Hernández-Ascencio W, Mora-Amador R, González G, Ramírez-Umaña CJ, Díez B, Pedrós-Alió C (2019) The influence of temperature and pH on bacterial community composition of microbial mats in hot springs from Costa Rica. MicrobiologyOpen 8:1–26. https://doi.org/10.1002/mbo3.893

    CAS  Article  Google Scholar 

  154. 154.

    Pandey N, Dhakar K, Jain R, Pandey A (2016) Temperature dependent lipase production from cold and pH tolerant species of Penicillium. Mycosphere 7:1533–1545. https://doi.org/10.5943/mycosphere/si/3b/5

    Article  Google Scholar 

  155. 155.

    Dhakar K, Pandey A (2016) Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 100:2499–2510. https://doi.org/10.1007/s00253-016-7285-2

    CAS  Article  PubMed  Google Scholar 

  156. 156.

    Kumar R, Acharya V, Mukhia S, Singh D, Kumar S (2019) Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics 111:492–499. https://doi.org/10.1016/j.ygeno.2018.03.008

    CAS  Article  PubMed  Google Scholar 

  157. 157.

    Guo G, Kong W, Liu J, Zhao J, Du H, Zhang X, Xia P (2015) Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Appl Microbiol Biotechnol 99:8765–8776. https://doi.org/10.1007/s00253-015-6723-x

    CAS  Article  PubMed  Google Scholar 

  158. 158.

    Mocali S, Chiellini C, Fabiani A, Decuzzi S, de Pascale D, Parrilli E, Tutino ML, Perrin E, Bosi E, Fondi M (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-00876-4

    CAS  Article  Google Scholar 

  159. 159.

    Yu H, Ding W, Chen Z, Zhang H, Luo J, Bolan N (2015) Accumulation of organic C components in soil and aggregates. Sci Rep 5:1–12. https://doi.org/10.1038/srep13804

    Article  Google Scholar 

  160. 160.

    Sati P, Dhakar K, Pandey A (2013) Microbial diversity in soil under potato cultivation from cold desert Himalaya, India. Int Sch Res Notices 2013:1–9. https://doi.org/10.1155/2013/767453

    Article  Google Scholar 

  161. 161.

    Sui X, Zhang R, Frey B, Yang L, Li M-H, Ni H (2019) Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang Plain, northeastern China. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-018-36675-8

    CAS  Article  Google Scholar 

  162. 162.

    Ashton P, Zhu H (2020) The tropical-subtropical evergreen forest transition in East Asia: an exploration. Plant Divers 42:255–280. https://doi.org/10.1016/j.pld.2020.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Lyngwi NA, Koijam K, Sharma D, Joshi S (2013) Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Rev Biol Trop 61:467–490

    Article  Google Scholar 

  164. 164.

    Singh R, Singh GS (2017) Traditional agriculture: a climate-smart approach for sustainable food production. Energ Ecol Environ 2:296–316. https://doi.org/10.1007/s40974-017-0074-7

    Article  Google Scholar 

  165. 165.

    Řeháková K, Chroňáková A, Krištůfek V, Kuchtová B, Čapková K, Scharfen J, Čapek P, Doležal J (2015) Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front Microbiol 6:1–16. https://doi.org/10.3389/fmicb.2015.00304

    Article  Google Scholar 

  166. 166.

    Trivedi P, Pandey A (2008) Plant growth promotion abilities and formulation of Bacillus megaterium strain B 388 (MTCC6521) isolated from a temperate Himalayan location. Indian J Microbiol 48:342–347. https://doi.org/10.1007/s12088-008-0042-1

    Article  PubMed  Google Scholar 

  167. 167.

    Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht J, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313. https://doi.org/10.4067/S0716-97602009000300005

    CAS  Article  PubMed  Google Scholar 

  168. 168.

    Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983. https://doi.org/10.1007/s00203-010-0615-3

    CAS  Article  PubMed  Google Scholar 

  169. 169.

    Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  170. 170.

    Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397. https://doi.org/10.1104/pp.010331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Prijambada ID, Widada J, Kabirun S, Widianto D (2009) Secretion of organic acids by phosphate solubilizing bacteria. J Trop Soils 14:245–251. https://doi.org/10.5400/jts.2009.v14i3.245-251

    Article  Google Scholar 

  173. 173.

    Musarrat J, Khan MS (2014) Factors affecting phosphate-solubilizing activity of microbes: current status. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer, pp 63–85. https://doi.org/10.1007/978-3-319-08216-5_3

  174. 174.

    Tomer S, Suyal DC, Shukla A, Rajwar J, Yadav A, Shouche Y, Goel R (2017) Isolation and characterization of phosphate solubilizing bacteria from Western Indian Himalayan soils. 3 Biotech 7:1–5. https://doi.org/10.1007/s13205-017-0738-1

    Article  Google Scholar 

  175. 175.

    Sahoo HR, Gupta N (2014) Phosphate-solubilizing fungi: impact on growth and development of economically important plants. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer, pp 87–111. https://doi.org/10.1007/978-3-319-08216-5_4

  176. 176.

    Yarzábal LA (2020) Perspectives for using glacial and periglacial microorganisms for plant growth promotion at low temperatures. Appl Microbiol Biotechnol 104:3267–3278. https://doi.org/10.1007/s00253-020-10468-4

    CAS  Article  PubMed  Google Scholar 

  177. 177.

    Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:1–10. https://doi.org/10.1038/srep12293

    CAS  Article  Google Scholar 

  178. 178.

    Bhandari G, Nautiyal N, Sharma M (2020) Assessment of genes and enzymes of microorganisms of high altitudes and their application in agriculture. In: Goel R, Soni R, Suyal DC (eds) Microbiological advancements for higher altitude agro-ecosystems & sustainability. Springer, pp 307–326.

  179. 179.

    Pandey A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 24:97–102. https://doi.org/10.1007/s11274-007-9444-1

    CAS  Article  Google Scholar 

  180. 180.

    Gusain YS, Kamal R, Mehta C, Singh U, Sharma A (2015) Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. J Environ Biol 36:301–307

    PubMed  Google Scholar 

  181. 181.

    Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS, Saxena AK (2020) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sec B Biol Sci 90:785–795. https://doi.org/10.1007/s40011-019-01151-4

    CAS  Article  Google Scholar 

  182. 182.

    Trivedi P, Kumar B, Pandey A, Palni L (2007) Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 291–299. https://doi.org/10.1007/978-1-4020-5765-6_47

    Chapter  Google Scholar 

  183. 183.

    Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta A, Gupta H (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50:50–56. https://doi.org/10.1007/s12088-009-0024-y

    CAS  Article  PubMed  Google Scholar 

  184. 184.

    Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135. https://doi.org/10.1007/s11274-010-0559-4

    CAS  Article  Google Scholar 

  185. 185.

    Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513. https://doi.org/10.1007/s00203-011-0693-x

    CAS  Article  PubMed  Google Scholar 

  186. 186.

    Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  187. 187.

    Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  188. 188.

    Yadav AN (2021) Phytomicrobiomes for agro-environmental sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.95ed

    CAS  Article  Google Scholar 

  189. 189.

    Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  190. 190.

    Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2020) Molecular diversity and functional annotation of potassium solubilizing bacteria associated with wheat (Triticum aestivum L.) from six diverse agro-ecological zones of India. Res J Biotechnol 15:41–56

    Google Scholar 

  191. 191.

    Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  192. 192.

    Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065

    Article  Google Scholar 

  193. 193.

    Kour D, Rana KL, Kaur T, Devi R, Yadav N, Halder SK, Kumar K, Yadav AN, Sachan SG, Saxena AK (2020) Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization and biotechnological implication for alleviations of abiotic stress. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspective. Elsevier, Amsterdam, pp 177–202. https://doi.org/10.1016/B978-0-12-820526-6.00012-9

  194. 194.

    Meena VS, Maurya BR, Meena SK, Mishra PK, Bisht JK, Pattanayak A (2018) Potassium solubilization: strategies to mitigate potassium deficiency in agricultural soils. GJBAHS 7:1–3

    Article  Google Scholar 

  195. 195.

    Rajawat MVS, Singh R, Singh D, Yadav AN, Singh S, Kumar M, Saxena AK (2020) Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Braz J Microbiol 51:751–764. https://doi.org/10.1007/s42770-019-00210-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution microbes for sustainable crop production, vol 1. Springer, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Chapter  Google Scholar 

  197. 197.

    Zhang H, Wei S, Hu W, Xiao L, Tang M (2017) Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum. Front Plant Sci 8:1–9. https://doi.org/10.3389/fpls.2017.00440

    Article  Google Scholar 

  198. 198.

    Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. https://doi.org/10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  199. 199.

    Bapiri A, Asgharzadeh A, Mujallali H, Khavazi K, Pazira E (2012) Evaluation of zinc solubilization potential by different strains of fluorescent pseudomonads. J Appl Sci Environ Manag 16:295–298

    CAS  Google Scholar 

  200. 200.

    Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agric Sci 52:915–922

    Google Scholar 

  201. 201.

    Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96. https://doi.org/10.1016/j.apsoil.2013.08.009

    Article  Google Scholar 

  202. 202.

    Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:1–14. https://doi.org/10.3389/fmicb.2017.02593

    Article  Google Scholar 

  203. 203.

    Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899. https://doi.org/10.1007/s13213-014-1027-4

    CAS  Article  Google Scholar 

  204. 204.

    Joshi D, Negi G, Vaid S, Sharma A (2013) Enhancement of wheat growth and Zn content in grains by zinc solubilizing bacteria. Int J Agric Environ Biotechnol 6:363–370. https://doi.org/10.5958/j.2230-732X.6.3.004

    Article  Google Scholar 

  205. 205.

    Naz I, Ahmad H, Khokhar SN, Khan K, Shah AH (2016) Impact of zinc solubilizing bacteria on zinc contents of wheat. Am Euras J Agric Environ Sci 16:449–454. https://doi.org/10.5829/idosi.aejaes.2016.16.3.12886

    CAS  Article  Google Scholar 

  206. 206.

    Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60. https://doi.org/10.1016/j.micres.2017.06.001

    CAS  Article  PubMed  Google Scholar 

  207. 207.

    Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  208. 208.

    Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN, Yadav N, Singh K, Saxena AK (2020) Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Kumar A, Radhakrishnan E (eds) Microbial Endophytes. Woodhead Publishing, Cambridge, MA, pp 273–305. https://doi.org/10.1016/B978-0-12-819654-0.00011-9

    Chapter  Google Scholar 

  209. 209.

    Soni R, Suyal DC, Sai S, Goel R (2016) Exploration of nifH gene through soil metagenomes of the western Indian Himalayas. 3 Biotech 6:1–4. https://doi.org/10.1007/s13205-015-0324-3

    Article  Google Scholar 

  210. 210.

    Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075-1107 https://doi.org/10.1007/s10482-020-01429-y

    CAS  Article  PubMed  Google Scholar 

  211. 211.

    Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK (2021) Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 76:2687–2709. https://doi.org/10.1007/s11756-021-00806-w

    Article  Google Scholar 

  212. 212.

    Oberson A, Frossard E, Bühlmann C, Mayer J, Mäder P, Lüscher A (2013) Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371:237–255. https://doi.org/10.1007/s11104-013-1666-4

    CAS  Article  Google Scholar 

  213. 213.

    Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.91ed

    CAS  Article  Google Scholar 

  214. 214.

    Pandey P, Sahgal M, Maheswari D, Johri B (2004) Genetic diversity of rhizobia isolated from medicinal legumes growing in the sub-Himalayan region of Uttaranchal. Curr Sci 86:202–207

    CAS  Google Scholar 

  215. 215.

    Chauhan A, Guleria S, Balgir PP, Walia A, Mahajan R, Mehta P, Shirkot CK (2017) Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz J Microbiol 48:294–304. https://doi.org/10.1016/j.bjm.2016.12.001

    CAS  Article  PubMed  Google Scholar 

  216. 216.

    Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte D, Jhala Y, Shelat H, Vyas R (eds) Microorganisms for green revolution. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

    Chapter  Google Scholar 

  217. 217.

    Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V, Suman A, Dhaliwal HS (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sec B Biol Sci 90:969–979. https://doi.org/10.1007/s40011-020-01168-0

    CAS  Article  Google Scholar 

  218. 218.

    Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  219. 219.

    Paul A, Dubey R (2014) Characterization of protein involve in nitrogen fixation and estimation of CO factor. Int J Adv Biotechnol Res 5:582–597

    Google Scholar 

  220. 220.

    Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–Siderophore: a review. Microbiol Res 212:103–111. https://doi.org/10.1016/j.micres.2017.10.012

    CAS  Article  PubMed  Google Scholar 

  221. 221.

    Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696

    CAS  Article  Google Scholar 

  222. 222.

    Speckbacher V, Zeilinger S (2018) Secondary metabolites of mycoparasitic fungi. In: Vijayakumar R, Raja SSS (eds) Secondary metabolites: sources and applications. Intechopen, London. https://doi.org/10.5772/intechopen.75133

    Chapter  Google Scholar 

  223. 223.

    Yarzábal LA, Monserrate L, Buela L, Chica E (2018) Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol 41:2343–2354. https://doi.org/10.1007/s00300-018-2374-6

    Article  Google Scholar 

  224. 224.

    Tapia-Vázquez I, Sánchez-Cruz R, Arroyo-Domínguez M, Lira-Ruan V, Sánchez-Reyes A, del Rayo S-C, Padilla-Chacón D, Batista-García RA, Folch-Mallol JL (2020) Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico. Microbiol Res 232:126394. https://doi.org/10.1016/j.micres.2019.126394

    CAS  Article  PubMed  Google Scholar 

  225. 225.

    Shen X, Hu H, Peng H, Wang W, Zhang X (2013) Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:1–20. https://doi.org/10.1186/1471-2164-14-271

    CAS  Article  Google Scholar 

  226. 226.

    Tedesco P, Palma Esposito F, Masino A, Vitale GA, Tortorella E, Poli A, Nicolaus B, van Zyl LJ, Trindade M, de Pascale D (2021) Isolation and characterization of strain Exiguobacterium sp. KRL4, a producer of bioactive secondary metabolites from a Tibetan glacier. Microorganisms 9:1–17. https://doi.org/10.3390/microorganisms9050890

    Article  Google Scholar 

  227. 227.

    Jain R, Bhardwaj P, Pandey SS, Kumar S (2021) Arnebia euchroma, a plant species of cold desert in the Himalayas, harbors beneficial cultivable endophytes in roots and leaves. Front Microbiol 12:1–16. https://doi.org/10.3389/fmicb.2021.696667

    CAS  Article  Google Scholar 

  228. 228.

    de Garcia Salamone IE, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195. https://doi.org/10.1007/1-4020-4152-7_6

    Chapter  Google Scholar 

  229. 229.

    Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011:1–30

    Google Scholar 

  230. 230.

    Etemadi M, Gutjahr C, Couzigou J-M, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier J-P (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–292. https://doi.org/10.1104/pp.114.246595

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Baghaee Ravari S, Heidarzadeh N (2014) Isolation and characterization of rhizosphere auxin producing Bacilli and evaluation of their potency on wheat growth improvement. Arch Agron Soil Sci 60:895–905. https://doi.org/10.1080/03650340.2013.856003

    CAS  Article  Google Scholar 

  232. 232.

    Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee YS (2015) Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology 43:49–56. https://doi.org/10.5941/MYCO.2015.43.1.49

    Article  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Yadav AN (2021) Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability. J Appl Biol Biotechnol 9:1–6. https://doi.org/10.7324/JABB.2021.9301

    CAS  Article  Google Scholar 

  234. 234.

    Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul 35:1074–1087. https://doi.org/10.1007/s00344-016-9604-3

    CAS  Article  Google Scholar 

  235. 235.

    Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77. https://doi.org/10.1016/j.funeco.2017.02.007

    Article  Google Scholar 

  236. 236.

    Minakshi SS, Sood G, Chauhan A (2020) Optimization of IAA production and P-solubilization potential in Bacillus subtilis KA (1) 5r isolated from the medicinal herb Aconitum heterophyllum-growing in western Himalaya, India. J Pharmacogn Phytochem 9:2008–2015

    Google Scholar 

  237. 237.

    Nazir U, Zargar M, Baba Z, Mir S, Mohiddin F, Bhat N (2020) Isolation and characterization of plant growth promoting rhizobacteria associated with pea rhizosphere in North Himalayan region. Int J Chem Stud 8:1131–1135

    CAS  Article  Google Scholar 

  238. 238.

    Dar GH, Sofi S, Padder S, Kabli A (2018) Molecular characterization of rhizobacteria isolated from walnut (Juglans regia) rhizosphere in western Himalayas and assessment of their plant growth promoting activities. Biodivers J Biol Divers 19:662–669. https://doi.org/10.13057/biodiv/d190245

    Article  Google Scholar 

  239. 239.

    Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci 98:10487–10492. https://doi.org/10.1073/pnas.171304098

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  240. 240.

    Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54. https://doi.org/10.1105/tpc.105.037796

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  241. 241.

    Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  PubMed  Google Scholar 

  242. 242.

    Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852. https://doi.org/10.1016/S0038-0717(99)00113-3

    CAS  Article  Google Scholar 

  243. 243.

    García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411. https://doi.org/10.1139/cjm-47-5-404

    Article  PubMed  Google Scholar 

  244. 244.

    Karnwal A, Kaushik P (2011) Cytokinin production by fluorescent Pseudomonas in the presence of rice root exudates. Arch Phytopathol Plant Prot 44:1728–1735. https://doi.org/10.1080/03235408.2010.526768

    CAS  Article  Google Scholar 

  245. 245.

    Selvakumar G, Bindu GH, Bhatt RM, Upreti KK, Paul AM, Asha A, Shweta K, Sharma M (2018) Osmotolerant cytokinin producing microbes enhance tomato growth in deficit irrigation conditions. Proc Natl Acad Sci India Sect B Biol Sci 88:459–465. https://doi.org/10.1007/s40011-016-0766-3

    CAS  Article  Google Scholar 

  246. 246.

    Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008) Molecular biology of gibberellins signaling in higher plants. Int Rev Cell Mol Biol 268:191–221. https://doi.org/10.1016/S1937-6448(08)00806-X

    CAS  Article  PubMed  Google Scholar 

  247. 247.

    Radhakrishnan R, Lee I-J (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189. https://doi.org/10.1016/j.plaphy.2016.09.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  248. 248.

    Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773. https://doi.org/10.3390/molecules170910754

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:1–14. https://doi.org/10.1186/1471-2180-12-3

    CAS  Article  Google Scholar 

  250. 250.

    Joo G-J, Kang S-M, Hamayun M, Kim S-K, Na C-I, Shin D-H, Lee I-J (2009) Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J Microbiol 47:167–171. https://doi.org/10.1007/s12275-008-0273-1

    CAS  Article  PubMed  Google Scholar 

  251. 251.

    Joo G-J, Kim Y-M, Kim J-T, Rhee I-K, Kim J-H, Lee I-J (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiolx 43:510–515

    CAS  Google Scholar 

  252. 252.

    Siddiqui ZA (2005) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142. https://doi.org/10.1007/1-4020-4152-7_4

    Chapter  Google Scholar 

  253. 253.

    Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    CAS  Article  Google Scholar 

  254. 254.

    de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity, and activity of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63

    Article  Google Scholar 

  255. 255.

    Gerbore J, Benhamou N, Vallance J, Le Floch G, Grizard D, Regnault-Roger C, Rey P (2014) Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ Sci Pollut Res 21:4847–4860. https://doi.org/10.1007/s11356-013-1807-6

    CAS  Article  Google Scholar 

  256. 256.

    Labuschagne N, Pretorius T, Idris A (2010) Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 211–230. https://doi.org/10.1007/978-3-642-13612-2_9

    Chapter  Google Scholar 

  257. 257.

    Fernando WD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, pp 67–109. https://doi.org/10.1007/1-4020-4152-7_3

  258. 258.

    Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670. https://doi.org/10.1007/s00253-010-2509-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  259. 259.

    Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 257–270

    Chapter  Google Scholar 

  260. 260.

    Srivastava N, Nandi I, Ibeyaima A, Gupta S, Sarethy IP (2019) Microbial diversity of a Himalayan forest and characterization of rare actinomycetes for antimicrobial compounds. 3 Biotech 9:27. https://doi.org/10.1007/s13205-018-1556-9

    Article  PubMed  PubMed Central  Google Scholar 

  261. 261.

    Gauchan DP, Kandel P, Tuladhar A, Acharya A, Kadel U, Baral A, Shahi AB, García-Gil MR (2020) Evaluation of antimicrobial, antioxidant and cytotoxic properties of bioactive compounds produced from endophytic fungi of Himalayan yew (Taxus wallichiana) in Nepal. F1000Res 9:1–28. https://doi.org/10.12688/f1000research.23250.2

    Article  Google Scholar 

  262. 262.

    Kumar V, Darnal S, Kumar S, Kumar S, Singh D (2021) Bioprocess for co-production of polyhydroxybutyrate and violacein using Himalayan bacterium Iodobacter sp. PCH194. Biores Technol 319:124235. https://doi.org/10.1016/j.biortech.2020.124235

    CAS  Article  Google Scholar 

  263. 263.

    Schippers B, Bakker A, Bakker P, Van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75–83. https://doi.org/10.1007/BF00011693

    CAS  Article  Google Scholar 

  264. 264.

    Voisard C, Keel C, Haas D, Dèfago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358. https://doi.org/10.1002/j.1460-2075.1989.tb03384.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  265. 265.

    Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650. https://doi.org/10.1007/s11274-005-9084-2

    CAS  Article  Google Scholar 

  266. 266.

    Selvakumar G, Mohan M, Kundu S, Gupta A, Joshi P, Nazim S, Gupta H (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175. https://doi.org/10.1111/j.1472-765X.2007.02282.x

    CAS  Article  PubMed  Google Scholar 

  267. 267.

    Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137. https://doi.org/10.1007/s11274-008-9874-4

    Article  Google Scholar 

  268. 268.

    Marques AP, Pires C, Moreira H, Rangel AO, Castro PM (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014

    CAS  Article  Google Scholar 

  269. 269.

    Yadav AN, Kumar V, Dhaliwal HS, Prasad R, Saxena AK (2018) Microbiome in Crops: Diversity, Distribution, and Potential Role in Crop Improvement. In:  Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 305–332. https://doi.org/10.1016/B978-0-444-63987-5.00015-3

  270. 270.

    Negi YK, Garg S, Kumar J (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 2151–2156.

  271. 271.

    Ghildiyal A, Pandey A (2008) Isolation of cold tolerant antifungal strains of Trichoderma sp. from glacial sites of Indian Himalayan Region. Res J Microbiol 3:559–564

    Article  Google Scholar 

  272. 272.

    Joshi B, Bhatt R, Bahukhandi D (2010) Antagonistic and plant growth activity of Trichoderma isolates of western Himalayas. J Environ Biol 31:921–928

    CAS  PubMed  Google Scholar 

  273. 273.

    Shanmugam V, Thakur H, Kaur J, Gupta S, Rajkumar S, Dohroo N (2013) Genetic diversity of Fusarium spp. inciting rhizome rot of ginger and its management by PGPR consortium in the western Himalayas. Biol Control 66:1–7. https://doi.org/10.1016/j.biocontrol.2013.03.001

    CAS  Article  Google Scholar 

  274. 274.

    Sofi S, Dar GH (2018) In vitro bioefficacy of rhizobacteria, isolated from walnut (Juglans regia L.) rhizosphere in north-western Himalayas, against five fungal phytopathogens. Appl Biol Res 20:234–243. https://doi.org/10.5958/0974-4517.2018.00032.0

    Article  Google Scholar 

  275. 275.

    Ghalib AK, Yasin M, Faisal M (2014) Characterization and metal detoxification potential of moderately thermophilic Bacillus cereus from geothermal springs of Himalaya. Braz Arch Biol Technol 57:554–560. https://doi.org/10.1590/S1516-8913201402001

    Article  Google Scholar 

  276. 276.

    Ali B, Sajjad W, Khan I, Rafiq M, Zada S, Shah AA, Hasan F (2020) Antibacterial activity and tolerance towards heavy metals by endolithic and epilithic bacteria isolated from rocks of Nathiagali, Lower Himalaya, Pakistan. Pak J Zool 52:465–475. https://doi.org/10.17582/journal.pjz/20190128140128

    CAS  Article  Google Scholar 

  277. 277.

    Verma S, Singh D, Chatterjee S (2020) Biodegradation of organophosphorus pesticide chlorpyrifos by Sphingobacterium sp. C1B, a psychrotolerant bacterium isolated from apple orchard in Himachal Pradesh of India. Extremophiles 24:897–908. https://doi.org/10.1007/s00792-020-01203-y

    CAS  Article  PubMed  Google Scholar 

  278. 278.

    Giri K, Suyal DC, Mishra G, Pandey S, Kumar R, Meena DK, Rai JPN (2017) Biodegradation of isoproturon by Bacillus pumilus K1 isolated from foothill agroecosystem of North West Himalaya. Proc Natl Acad Sci India Sec B Biol Sci 87:839–848. https://doi.org/10.1007/s40011-015-0667-x

    CAS  Article  Google Scholar 

  279. 279.

    Verma S, Chatterjee S (2021) Biodegradation of profenofos, an acetylcholine esterase inhibitor by a psychrotolerant strain Rahnella sp. PFF2 and degradation pathway analysis. Int Biodeterior Biodegr 158:105169. https://doi.org/10.1016/j.ibiod.2020.105169

    CAS  Article  Google Scholar 

  280. 280.

    Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2, 3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115. https://doi.org/10.1099/mic.0.2006/004218-0

    CAS  Article  PubMed  Google Scholar 

  281. 281.

    Mahajan R, Verma S, Kushwaha M, Singh D, Akhter Y, Chatterjee S (2019) Biodegradation of di-n-butyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway. Int J Biol Macromol 122:806–816. https://doi.org/10.1016/j.ijbiomac.2018.10.225

    CAS  Article  PubMed  Google Scholar 

  282. 282.

    Kumar V, Kumar V, Bhalla TC (2013) In vitro cyanide degradation by Serretia marcescens RL2b. Int J Environ Sci 3:1969–1979. https://doi.org/10.6088/ijes.2013030600018

    CAS  Article  Google Scholar 

  283. 283.

    Mehta A, Bhardwaj KK, Shaiza M, Gupta R (2021) Isolation, characterization and identification of pesticide degrading bacteria from contaminated soil for bioremediation. Biol Futura. https://doi.org/10.1007/s42977-021-00080-6

    Article  Google Scholar 

  284. 284.

    Murtaza I, Bushra SS, Ubaid-Ullah S, Laila O, Majid S, Dar NA, Ahmad M, Sharma G (2018) A comparative study on biodegradation of chlorpyrifos by wild E. coli and Pseudomonas fluorescens bacterial isolates inhabiting different ecosystems of Kashmir valley. Curr Sci 115:753

    CAS  Article  Google Scholar 

  285. 285.

    Lone MA, Wani MR (2012) Degradation of dimethoate and pyrethroid by using fungal strains isolated from the rhizosphere of Juglans regia L. in the northern region of Jammu and Kashmir. India Inter J Pharma Bio Sci 3:716–723

    Google Scholar 

  286. 286.

    Rathour R, Gupta J, Tyagi B, Kumari T, Thakur IS (2018) Biodegradation of pyrene in soil microcosm by Shewanella sp. ISTPL2, a psychrophilic, alkalophilic and halophilic bacterium. Biores Technol Rep 4:129–136. https://doi.org/10.1016/j.biteb.2018.10.004

    Article  Google Scholar 

  287. 287.

    Bisht J, Harsh N, Palni LMS, Agnihotri V, Kumar A (2019) Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remediation J 29:63–77. https://doi.org/10.1002/rem.21599

    Article  Google Scholar 

  288. 288.

    Yang R, Zhang G, Li S, Moazeni F, Li Y, Wu Y, Zhang W, Chen T, Liu G, Zhang B, Wu X (2019) Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms. Environ Sci Pollut Res 26:1834–1847. https://doi.org/10.1007/s11356-018-3718-z

    CAS  Article  Google Scholar 

  289. 289.

    Long H, Wang Y, Chang S, Liu G, Chen T, Huo G, Zhang W, Wu X, Tai X, Sun L, Zhang B (2017) Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau. Environ Monit Assess 189:116. https://doi.org/10.1007/s10661-017-5798-5

    CAS  Article  PubMed  Google Scholar 

  290. 290.

    Dong Z-L, Wang B-S, Li J (2020) Effects of petroleum hydrocarbon contamination on soil bacterial diversity in the permafrost region of the Qinghai-Tibetan Plateau. Soil Sediment Contam Int J 29:322–339. https://doi.org/10.1080/15320383.2019.1710109

    CAS  Article  Google Scholar 

  291. 291.

    Kumar A, Yadav AN, Mondal R, Kour D, Subrahmanyam G, Shabnam AA, Khan SA, Yadav KK, Sharma GK, Cabral-Pinto M, Fagodiya RK, Gupta DK, Hota S, Malyan SK (2021) Myco-remediation: a mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 284:131325. https://doi.org/10.1016/j.chemosphere.2021.131325

  292. 292.

    Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD, Yadav AN, Singh K, Singh J, Sayyed RZ, Arora NK, Saxena AK (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939. https://doi.org/10.1007/s11356-021-13252-7

    CAS  Article  Google Scholar 

  293. 293.

    Verma S, Singh D, Chatterjee S (2021) Malathion biodegradation by a psychrotolerant bacteria Ochrobactrum sp. M1D and metabolic pathway analysis. Lett Appl Microbiol. https://doi.org/10.1111/lam.13517

    Article  PubMed  Google Scholar 

  294. 294.

    Uniyal S, Sharma RK, Kondakal V (2021) New insights into the biodegradation of chlorpyrifos by a novel bacterial consortium: process optimization using general factorial experimental design. Ecotoxicol Environ Safety 209:111799. https://doi.org/10.1016/j.ecoenv.2020.111799

    CAS  Article  PubMed  Google Scholar 

  295. 295.

    Dindhoria K, Kumar S, Kumar R (2021) Taxonomic and functional analysis of proglacial water bodies of Triloknath glacier ecosystem from north-western Himalayas. Ecological Inform 64:101365. https://doi.org/10.1016/j.ecoinf.2021.101365

    Article  Google Scholar 

  296. 296.

    Bhatt P, Huang Y, Rene ER, Kumar AJ, Chen S (2020) Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge. Biores Technol 305:123074. https://doi.org/10.1016/j.biortech.2020.123074

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib.

Funding

Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this review.

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Yes.

Consent for Publication

Yes.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suyal, D.C., Joshi, D., Kumar, S. et al. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. Microb Ecol (2021). https://doi.org/10.1007/s00248-021-01849-x

Download citation

Keywords

  • Biodiversity
  • Ecology
  • Himalayas
  • Psychotropic
  • Sustainability