Skip to main content

Advertisement

Log in

Risk of Collapse in Water Quality in the Guandu River (Rio de Janeiro, Brazil)

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

A Commentary to this article was published on 29 April 2022

Abstract

The Guandu River, one of the main rivers in the state of Rio de Janeiro, provides water for more than nine million people in the metropolitan region. However, the Guandu has suffered from massive domestic and industrial pollution for more than two decades, leading to high levels of dissolved total phosphorus, cyanobacteria, and enteric bacteria observed during the summers of 2020 and 2021. The use of Phoslock, a palliative compound, was not effective in mitigating the levels of phosphorus in the Guandu River. Furthermore, potable water driven from the river had levels of 2-MIB/geosmin and a mud smell/taste. With all these problems, several solutions are proposed for improving the Guandu River water quality, including establishment of (i) sewage treatment plants (STPs), (ii) strict water quality monitoring, (iii) environmental recovery (e.g., reforestation), and (iv) permanent protected areas. The objective of this paper is to verify the poor water quality in the Guandu and the ineffectiveness and undesired effects of Phoslock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Fistarol GO, Coutinho FH, Moreira AP, Venas T, Cánovas A, de Paula SE Jr, Coutinho R, de Moura RL, Valentin JL, Tenenbaum DR, Paranhos R, do Valle Rde A, Vicente AC, Amado Filho GM, Pereira RC, Kruger R, Rezende CE, Thompson CC, Salomon PS, Thompson FL (2015) Environmental and sanitary conditions of Guanabara bay, Rio de Janeiro. Front Microbiol.https://doi.org/10.3389/fmicb.2015.01232

  2. Parente TE, De-Oliveira AC, Silva IB, Araujo FG, Paumgartten FJ (2004) Induced alkoxyresorufin-O-dealkylases in tilapias (Oreochromis niloticus) from Guandu river, Rio de Janeiro, Brazil. Chemosphere 54(11):1613–1618. https://doi.org/10.1016/j.chemosphere.2003.09.027

    Article  CAS  PubMed  Google Scholar 

  3. Torres JP, Malm O, Vieira ED, Japenga J, Koopmans GF (2002) Organic micropollutants on river sediments from Rio de Janeiro State, Southeast Brazil. Cad Saude Publica 18(2):477–488. https://doi.org/10.1590/s0102-311x2002000200012

    Article  PubMed  Google Scholar 

  4. Parente TE, De-Oliveira AC, Paumgartten FJ (2008) Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepaguá Lake, Rio de Janeiro, Brazil. Environ Pollut 152(1):233–238. https://doi.org/10.1016/j.envpol.2007.04.025

    Article  CAS  PubMed  Google Scholar 

  5. Tonhá MS, Araújo DF, Araújo R, Cunha BCA, Machado W, Portela JF, Pr Souza J, Carvalho HK, Dantas EL, Roig HL, Seyler P, Garnier J (2020) Trace metal dynamics in an industrialized Brazilian river: a combined application of Zn isotopes, geochemical partitioning, and multivariate statistics. J Environ Sci 313–325.https://doi.org/10.1016/j.jes.2020.08.027

  6. Molisani MM, Rocha R, Machado W, Barreto RC, Lacerda LD (2006) Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil. Braz J Biol 66(1A):101–107. https://doi.org/10.1590/s1519-69842006000100013

    Article  CAS  PubMed  Google Scholar 

  7. Paraquetti HH, Ayres GA, Dominguez de Almeida M, Molisani MM, de Lacerda LD (2004) Mercury distribution, speciation and flux in the Sepetiba Bay tributaries, SE Brazil. Water Res 38(6):1439–1448. https://doi.org/10.1016/j.watres.2003.11.039

    Article  CAS  PubMed  Google Scholar 

  8. Dias AC, Gomes FW, Bila DM, Sant’Anna GL Jr, Dezotti M, (2015) Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen. Ecotoxicol Environ Saf 120:41–47. https://doi.org/10.1016/j.ecoenv.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  9. Tubbs Filho D, Antunes JCO, Vettorazzi JS (2012) Bacia Hidrográfica dos Rios Guandu, da Guarda e Guandu-Mirim/Comitê da Bacia Hidrográfica Guandu. Rio de Janeiro: INEA ISBN: 978–85–63884–10–7. http://www.inea.rj.gov.br/wp-content/uploads/2019/01/Livro_Bacia-Hidrogr%C3%A1fica-dos-Rios-Guandu-da-Guarda-e-Guandu-Mirim.pdf

  10. Inea (2014) Fundação Coppetec. Plano Estadual de Recursos Hídricos do Estado do Rio de Janeiro. Relatório final

  11. Brasil (2005) Resolução Conselho Nacional do Meio Ambiente no. 357, de 17 de março de 2005. Publicada no DOU nº 053, de 18/03/2005

  12. Sotero-Martins (2021) A. Events linked to Geosmin and 2-methylisoborneol (2-MIB) in a Water Supply Source in the State of Rio de Janeiro, Brazil: a case study | SciELO Preprints https://doi.org/10.1007/s10750-012-1206-x

  13. Pan C, Zhang L, Meng X, Qin H, Xiang Z, Gong W, Luo W, Li D, Han X (2021) Chronic exposure to microcystin-LR increases the risk of prostate cancer and induces malignant transformation of human prostate epithelial cells. Chemosphere 263:128295. https://doi.org/10.1016/j.chemosphere.2020.128295

    Article  CAS  PubMed  Google Scholar 

  14. Standard Methods for the Examination of Water and Wastewater, 2012. 22st Edition

  15. EPA (2001) Trace elements in water, solids, and biosolids by inductively coupled plasma-atomic emission spectrometry.  U. S. Environmental Protection Agency Office of Science and Technology, Washington, DC. http://nepis.epa.gov

  16. Cordeiro MC, Garcia GD, Rocha AM, Tschoeke DA, Campeão ME, Appolinario LR, Soares AC, Leomil L, Froes A, Bahiense L, Rezende CE, de Almeida MG, Rangel TP, De Oliveira BCV, de Almeida DQR, Thompson MC, Thompson CC, Thompson FL (2019) Insights on the freshwater microbiomes metabolic changes associated with the world’s largest mining disaster. Sci Total Environ 654:1209–1217. https://doi.org/10.1016/j.scitotenv.2018.11.112

    Article  CAS  PubMed  Google Scholar 

  17. Walter JM, Lopes FAC, Lopes-Ferreira M, Vidal LM, Leomil L, Melo F, de Azevedo GS, Oliveira RMS, Medeiros AJ, Melo ASO, De Rezende CE, Tanuri A, Thompson FL (2018) Occurrence of harmful cyanobacteria in drinking water from a severely drought-impacted semi-arid region. Front Microbiol 9:176. https://doi.org/10.3389/fmicb.2018.00176

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moura PG, Kotowski Filho NP, Elvira Carvajal, Natasha Berendonk Handam, Rodrigo Jardim, Adriana Sotero Martins (2020) Rio de Janeiro water crisis: a metagenomic approach. https://doi.org/10.1590/SciELOPreprints.529

  19. Barbosa RG, Sleutels T, Verstraete W, Boon N (2020) Hydrogen oxidizing bacteria are capable of removing orthophosphate to ultra-low concentrations in a fed batch reactor configuration. Bioresour Technol 311:123494. https://doi.org/10.1016/j.biortech.2020.123494

    Article  CAS  PubMed  Google Scholar 

  20. Castelo-Grande T, Augusto PA, Rico J, Marcos J, Iglesias R, Hernández L, Barbosa D (2021) Magnetic water treatment in a wastewater treatment plant: part I - sorption and magnetic particles. J Environ Manag 281:111872. https://doi.org/10.1016/j.jenvman.2020.111872

    Article  CAS  Google Scholar 

  21. Rocha EG, Feitosa PHC, de Amorim CM, Barbosa DL (2021) Temporal and spatial trends of a floating islands system’s efficiency. J Environ Manage 277:111367. https://doi.org/10.1016/j.jenvman.2020.111367

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Verweij RA, van Gestel CAM (2018) Lanthanum toxicity to five different species of soil invertebrates in relation to availability in soil. Chemosphere 193:412–420. https://doi.org/10.1016/j.chemosphere.2017.11.040

    Article  CAS  PubMed  Google Scholar 

  23. Li M, Zhuang L, Zhang G, Lan C, Yan L, Liang R, Hao C, Li Z, Zhang J, Lu Q, Wang B (2021) Association between exposure of light rare earth elements and outcomes of in vitro fertilization-embryo transfer in North China. Sci Total Environ 762:143106. https://doi.org/10.1016/j.scitotenv.2020.143106

    Article  CAS  PubMed  Google Scholar 

  24. Spears BM, Mackay EB, Yasseri S, Gunn ID, Waters KE, Andrews C, Cole S, De Ville M, Kelly A, Meis S, Moore AL, Nürnberg GK, van Oosterhout F, Pitt JA, Madgwick G, Woods HJ, Lürling M (2016) A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum-modified bentonite (Phoslock(®)). Water Res 97:111–121. https://doi.org/10.1016/j.watres.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  25. Lürling M, van Oosterhout F (2013) Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Res 47(17):6527–6537. https://doi.org/10.1016/j.watres.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  26. Van Oosterhout F, Lürling M (2013) The effect of phosphorus binding clay (Phoslock®) in mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality variables and plankton. Hydrobiologia 710:265–277

    Article  CAS  Google Scholar 

  27. Lürling M, Mucci M, Waajen G (2020) Removal of positively buoyant Planktothrix rubescens in Lake Restoration. Toxins (Basel) 12(11):700. https://doi.org/10.3390/toxins12110700

    Article  CAS  Google Scholar 

  28. Waajen G, Pauwels M, Lürling M (2017) Effects of combined flocculant - Lanthanum modified bentonite treatment on aquatic macroinvertebrate fauna. Water Res 122:183–193. https://doi.org/10.1016/j.watres.2017.05.075

    Article  CAS  PubMed  Google Scholar 

  29. Waajen G, Van Oosterhout F, Lürling M (2017) Bio-accumulation of lanthanum from lanthanum modified bentonite treatments in lake restoration. Environ Pollut 230:911–918. https://doi.org/10.1016/j.envpol.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  30. Behets GJ, Mubiana KV, Lamberts L, Finsterle K, Traill N, Blust R, D’Haese PC (2020) Use of lanthanum for water treatment: a matter of concern? Chemosphere 239:124780. https://doi.org/10.1016/j.chemosphere.2019.124780

    Article  CAS  PubMed  Google Scholar 

  31. D’Haese PC, Douglas G, Verhulst A, Neven E, Behets GJ, Vervaet BA, Finsterle K, Lürling M, Spears B (2019) Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium. Chemosphere 220:286–299. https://doi.org/10.1016/j.chemosphere.2018.12.093

    Article  CAS  PubMed  Google Scholar 

  32. Cao B, Wu J, Xu C, Chen Y, Xie Q, Ouyang L, Wang J (2020) The accumulation and metabolism characteristics of rare earth elements in Sprague-Dawley Rats. Int J Environ Res Public Health 17(4):1399. https://doi.org/10.3390/ijerph17041399

    Article  CAS  PubMed Central  Google Scholar 

  33. Liu L, Wang L, Ni W, Pan Y, Chen Y, Xie Q, Liu Y, Ren A (2021) Rare earth elements in umbilical cord and risk for orofacial clefts. Ecotoxicol Environ Saf 207:111284. https://doi.org/10.1016/j.ecoenv.2020.111284

    Article  CAS  PubMed  Google Scholar 

  34. Yuan L, Bai D, Meng L, Wang H, Sun Z, An T, Chen Z, Deng X, Zhang X (2019) Effects of intragastric administration of La2O3 nanoparticles on mouse testes. J Toxicol Sci 45(8):411–422. https://doi.org/10.2131/jts.45.411

    Article  Google Scholar 

  35. Yuan L, Li Q, Bai D, Shang X, Hu F, Chen Z, An T, Chen Y, Zhang X (2020) La2O3 nanoparticles induce reproductive toxicity mediated by the Nrf-2/ARE signaling pathway in kunming mice. Int J Nanomed 15:3415–3431. https://doi.org/10.2147/IJN.S230949

    Article  CAS  Google Scholar 

  36. Australia (2011) Administrative report. Review of lanthanum fact sheet for inclusion in the Australian drinking water guidelines 2011. https://www.nhmrc.gov.au/sites/default/files/documents/attachments/review-lanthanum-factsheet-aus-drinkingwater-2011.pdf. Accessed Apr 2021

  37. Iftikhar M, Noureen A, Uzair M, Jabeen F, Abdel Daim M, Cappello T (2021) Perspectives of nanoparticles in male infertility: evidence for induced abnormalities in sperm production. Int J Environ Res Public Health 18(4):1758. https://doi.org/10.3390/ijerph18041758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lim CH (2015) Toxicity of two different sized lanthanum oxides in cultured cells and Sprague-Dawley rats. Toxicol Res 31(2):181–189. https://doi.org/10.5487/TR.2015.31.2.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paiva AV, de Oliveira MS, Yunes SN, de Oliveira LG, Cabral-Neto JB, de Almeida CE (2009) Effects of lanthanum on human lymphocytes viability and DNA strand break. Bull Environ Contam Toxicol 82(4):423–427. https://doi.org/10.1007/s00128-008-9596-1

    Article  CAS  PubMed  Google Scholar 

  40. Sun D, He N, Chen Q, Duan S (2019) Effects of lanthanum on the photosystem II energy fluxes and antioxidant system of Chlorella vulgaris and Phaeodactylum tricornutum. Int J Environ Res Public Health 16(12):2242. https://doi.org/10.3390/ijerph16122242

    Article  CAS  PubMed Central  Google Scholar 

  41. Gong B, He E, Qiu H, Li J, Ji J, Zhao L, Cao X (2018) Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability. Environ Pollut 246:114–121. https://doi.org/10.1016/j.envpol.2018.11.106

    Article  CAS  PubMed  Google Scholar 

  42. Kotelnikova A, Fastovets I, Rogova O, Volkov DS, Stolbova V (2019) Toxicity assay of lanthanum and cerium in solutions and soil. Ecotoxicol Environ Saf 167:20–28. https://doi.org/10.1016/j.ecoenv.2018.09.117

    Article  CAS  PubMed  Google Scholar 

  43. Siddiqui MH, Alamri S, Alsubaie QD, Ali HM, Ibrahim AA, Alsadon A (2019) Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings. Ecotoxicol Environ Saf 180:656–667. https://doi.org/10.1016/j.ecoenv.2019.05.043

    Article  CAS  PubMed  Google Scholar 

  44. Bergsten-Torralba LR, Magalhães DP, Giese EC, Nascimento CRS, Pinho JVA, Buss DF (2020) Toxicity of three rare earth elements, and their combinations to algae, microcrustaceans, and fungi. Ecotoxicol Environ Saf 201:110795. https://doi.org/10.1016/j.ecoenv.2020.110795

    Article  CAS  PubMed  Google Scholar 

  45. Pinto J, Costa M, Leite C, Borges C, Coppola F, Henriques B, Monteiro R, Russo T, Di Cosmo A, Soares AMVM, Polese G, Pereira E, Freitas R (2019) Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. Aquat Toxicol 211:181–192. https://doi.org/10.1016/j.aquatox.2019.03.017

    Article  CAS  PubMed  Google Scholar 

  46. Mestre NC, Sousa VS, Rocha TL, Bebianno MJ (2019) Ecotoxicity of rare earths in the marine mussel Mytilus galloprovincialis and a preliminary approach to assess environmental risk. Ecotoxicology 28(3):294–301. https://doi.org/10.1007/s10646-019-02022-4

    Article  CAS  PubMed  Google Scholar 

  47. Hanana H, Kleinert C, Gagné (2021) Toxicity of representative mixture of five rare earth elements in juvenile rainbow trout (Oncorhynchus mykiss) juveniles. Environ Sci Pollut Res 28:28263–28274. https://doi.org/10.1007/s11356-020-12218-5

  48. Zhao Y, Liang J, Meng H, Yin Y, Zhen H, Zheng X, Shi H, Wu X, Zu Y, Wang B, Fan L, Zhang K (2021) Rare earth elements lanthanum and praseodymium adversely affect neural and cardiovascular development in zebrafish (Danio rerio). Environ Sci Technol 55(2):1155–1166. https://doi.org/10.1021/acs.est.0c06632

    Article  CAS  PubMed  Google Scholar 

  49. Hua D, Wang J, Yu D, Liu J (2017) Lanthanum exerts acute toxicity and histopathological changes in gill and liver tissue of rare minnow (Gobiocypris rarus). Ecotoxicology 26(9):1207–1215. https://doi.org/10.1007/s10646-017-1846-8

    Article  CAS  PubMed  Google Scholar 

  50. Ji J, Hong F, Zhou Y, Liu T, Fan D, Zhang X, Lu Y, Jiang L, Wang X, Wang C (2020) Molecular mechanisms associated with oxidative damage in the mouse testis induced by LaCl3. Environ Toxicol 36(3):408–416. https://doi.org/10.1002/tox.23046

    Article  CAS  PubMed  Google Scholar 

  51. Zheng L, Zhang J, Yu S, Ding Z, Song H, Wang Y, Li Y (2020) Lanthanum chloride causes neurotoxicity in rats by upregulating miR-124 expression and targeting PIK3CA to regulate the PI3K/Akt signaling pathway. Biomed Res Int 2020:5205142. https://doi.org/10.1155/2020/5205142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao X, Yong L, Liu D, Yang H, Liang C, Jia X, Liu Z, Song Y (2020) Effects of in utero exposure to lanthanum on neurological behavior in rat offspring. Neurotoxicol Teratol 77:106854. https://doi.org/10.1016/j.ntt.2019.106854

    Article  CAS  PubMed  Google Scholar 

  53. Sun W, Yang J, Hong Y, Yuan H, Wang J, Zhang Y, Lu X, Jin C, Wu S, Cai Y (2020) Lanthanum chloride impairs learning and memory and induces dendritic spine abnormality by down-regulating Rac1/PAK signaling pathway in hippocampus of offspring rats. Cell Mol Neurobiol 40(3):459–475. https://doi.org/10.1007/s10571-019-00748-7

    Article  CAS  PubMed  Google Scholar 

  54. Wei J, Wang C, Yin S, Pi X, Jin L, Li Z, Liu J, Wang L, Yin C, Ren A (2020) Concentrations of rare earth elements in maternal serum during pregnancy and risk for fetal neural tube defects. Environ Int 137:105542. https://doi.org/10.1016/j.envint.2020.105542

    Article  CAS  PubMed  Google Scholar 

  55. Yan L, Yang J, Yu M, Lu Y, Huang L, Wang J, Lu X, Jin C, Wu S, Cai Y (2019) Lanthanum chloride induces neuron damage by activating the nuclear factor-kappa B signaling pathway in activated microglia. Metallomics 11(7):1277–1287. https://doi.org/10.1039/c9mt00108e

    Article  CAS  PubMed  Google Scholar 

  56. Cheng J, Cheng Z, Hu R, Cui Y, Cai J, Li N, Gui S, Sang X, Sun Q, Wang L, Hong F (2011) Immune dysfunction and liver damage of mice following exposure to lanthanoids. Environ Toxicol 29(1):64–73. https://doi.org/10.1002/tox.20773

    Article  CAS  PubMed  Google Scholar 

  57. Shin SH, Lim CH, Kim YS, Lee YH, Kim SH, Kim JC (2017) Twenty-eight-day repeated inhalation toxicity study of nano-sized lanthanum oxide in male sprague-dawley rats. Environ Toxicol 32(4):1226–1240. https://doi.org/10.1002/tox.22319

    Article  CAS  PubMed  Google Scholar 

  58. Brasil (2011) Ministério da Saúde. Portaria no. 2914, de 12 de Dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. https://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html

  59. Sungmin J, Kiyong K, Lee Y, Jaeyong L, Yukyong C, Arif R, Jaiku K, Jeffrey S, Bomchul K (2016) The effect of phosphorus removal from sewage on the plankton community in a hypertrophic reservoir Jung et al. J Ecol Environ 40:9. https://doi.org/10.1186/s41610-016-0005-0

    Article  Google Scholar 

  60. Tsutiya MT, Sobrinho PA (2000) Coleta e transporte de esgoto sanitário. Departmento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Univ, da São Paulo

    Google Scholar 

  61. Jutta F, Sally A, Arni L, Giuseppe M, Lajos V, Károly P, Dietmar S, Reiner K, David M, Geoff MP, Ingrid C (2016) Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies. Aquat Ecol 50:367–383. https://doi.org/10.1007/s10452-015-9558-8

    Article  CAS  Google Scholar 

  62. Sarkar D, Lahiri S, Ghosh D (2019) Jana D D (2019) Ecological processes-driven distribution of net-algal diversity and carbon sequestration potential across the sewage effluent gradient of stabilization pond system. Ecohydrol Hydrobiol 19(3):464–472

    Article  Google Scholar 

  63. Toet S, Van Logtestijn RSP, Schreijer M, Kampf R, Verhoeven JTA (2005) The functioning of a wetland system used for polishing effluent from a sewage treatment plant. Ecol Eng 25(1):101–124

    Article  Google Scholar 

  64. Mburu N, Tebitendwa SM, Bruggen JJA, Rousseau DPL, Lens PNL (2013) Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: A case study of the Juja sewage treatment works. J Environ Manag 128:220–225. https://doi.org/10.1016/j.jenvman.2013.05.031

    Article  CAS  Google Scholar 

  65. Zinabu E, Kelderman P, Van der Kwast J, Irvine K (2018) Impacts and policy implications of metals effluent discharge into rivers within industrial zones: a sub-Saharan perspective from Ethiopia. Environ Manag 61:700–715. https://doi.org/10.1007/s00267-017-0970-9

    Article  CAS  Google Scholar 

  66. Wan L, Wang H (2021) Control of urban river water pollution is studied based on SMS. Environ Technol Innov 22:101468. https://doi.org/10.1016/j.eti.2021.101468

    Article  CAS  Google Scholar 

  67. Palmer M, Allan J (2006) Restoring rivers. Issues in Science and Technology 22(2):40–48. http://www.jstor.org/stable/43314310

  68. Ramião JP, Cássio F, Pascoal C (2020) Riparian land use and stream habitat regulate water quality. Limnologica 82:125762. https://doi.org/10.1016/j.limno.2020.125762

    Article  CAS  Google Scholar 

  69. Lohner TW, Douglas A (2013) Dixon The value of long-term environmental monitoring programs: an Ohio River case study. Environ Monit Assess 185:9385–9396. https://doi.org/10.1007/s10661-013-3258-4

    Article  PubMed  PubMed Central  Google Scholar 

  70. Christian RL, Stefan D, Imanol Z, Adeline M, Christian Z (2017) Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle- income settings Rev Environ Sci. Biotechnol 16:81–130. https://doi.org/10.1007/s11157-017-9422-5

    Article  Google Scholar 

  71. Miguel S (2016) Nova York tem a água mais pura do planeta. http://www.iea.usp.br/noticias/nova-york-a-metropole-com-a-agua-mais-pura-do-planeta-1. IEA – Instituto de Estudos Avançados da Universidade de São Paulo. Acessed 28 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Thompson.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacha, L., Ventura, R., Barrios, M. et al. Risk of Collapse in Water Quality in the Guandu River (Rio de Janeiro, Brazil). Microb Ecol 84, 314–324 (2022). https://doi.org/10.1007/s00248-021-01839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01839-z

Keywords

Navigation