Skip to main content

Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål)


Understanding the composition of microorganismal communities hosted by insect pests is an important prerequisite for revealing their functions and developing new pest control strategies. Although studies of the structure of the microbiome of Nilaparvata lugens have been published, little is known about the dynamic changes in this microbiome across different developmental stages, and an understanding of the core microbiota is still lacking. In this study, we investigated the dynamic changes in bacteria and fungi in different developmental stages of N. lugens using high-throughput sequencing technology. We observed that the microbial diversity in eggs and mated adults was higher than that in nymphs and unmated adults. We also observed a notable strong correlation between fungal and bacterial α-diversity, which suggests that fungi and bacteria are closely linked and may perform functions collaboratively during the whole developmental period. Arsenophonus and Hirsutella were the predominant bacterial and fungal taxa, respectively. Bacteria were more conserved than fungi during the transmission of the microbiota between developmental stages. Compared with that in the nymph and unmated adult stages of N. lugens, the correlation between bacterial and fungal communities in the mated adult and egg stages was stronger. Moreover, the core microbiota across all developmental stages in N. lugens was identified, and there were more bacterial genera than fungal genera; notably, the core microbiota of eggs, nymphs, and mated and unmated adults showed distinctive functional enrichment. These findings highlight the potential value of further exploring microbial functions during different developmental stages and developing new pest management strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.


  1. 1.

    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110:3229–3236.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Engel P, Moran NA (2013) The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 37:699–735.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Janson EM, Stireman JO III, Singer MS, Abbot P (2008) Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012.

    Article  PubMed  Google Scholar 

  5. 5.

    Weiss BL, Wang J, Aksoy S (2011) Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 9:e1000619.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, Van Maele L, Sirard JC, Mueller AJ, Heikenwalder M, Macpherson AJ, Strugnell R, Mering C, Hardt WD (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6:e1001097.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Stecher B, Hardt WD (2011) Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:82–91.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Cai T, Zhang Y, Liu Y, Deng X, He S, Li J, Wan H (2021) Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress. Insect Sci 28:355–362.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Tang T, Zhang Y, Cai T, Deng X, Liu C, Li J, He S, Li J, Wan H (2020) Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper Nilaparvata lugens. J Pest Sci.

    Article  Google Scholar 

  10. 10.

    Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Complete genome of the uncultured termite group 1 bacteria in a single host protist cell. Proc Natl Acad Sci 105:5555–5560.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci 109:8618–8622.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the california Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165:2029–2038.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mao K, Zhang X, Ali E, Liao X, Jin R, Ren Z, Wan H, Li J (2019) Characterization of nitenpyram resistance in Nilaparvata lugens (Stal). Pestic Biochem Physiol 157:26–32.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Zhang Y, Tang T, Li W, Cai T, Li J, Wan H (2018) Functional profiling of the gut microbiomes in two different populations of the brown planthopper, Nilaparvata lugens. J Asia-Pac Entomol 21:1309–1314.

    Article  Google Scholar 

  15. 15.

    Wang ZL, Wang TZ, Zhu HF, Pan HB, Yu XP (2020) Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. Insect Sci 27:883–894.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5:307–317.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Noda H, Koizumi Y (2003) Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbiotes of rice planthoppers and anobiid beetles. Insect Biochem Mol Biol 33:649–658.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Xue J, Zhou X, Zhang CX, Yu LL, Fan HW, Wang Z, Xu HJ, Xi Y, Zhu ZR, Zhou WW, Pan PL, Li BL, Colbourne JK, Noda H, Suetsugu Y, Kobayashi T, Zheng Y, Liu S, Zhang R, Liu Y et al (2014) Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol 15:521.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, Zhang KJ, Huang HJ, Gong JT, Zhang X, Hong XY (2020) Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J 14:676–687.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Pang R, Chen M, Yue L, Xing K, Li T, Kang K, Liang Z, Yuan L, Zhang W (2018) A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genet 14:e1007725.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Santos-Garcia D, Mestre-Rincon N, Zchori-Fein E, Morin S (2020) Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J 14:847–856.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12.

    Article  Google Scholar 

  25. 25.

    Schuler CJ, Hirsch M, Harmeling S, Schoelkopf B (2016) Learning to deblur. IEEE Trans Pattern Anal Mach Intell 38:1439–51.

  26. 26.

    Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Deshpande V, Wang Q, Greenfield P, Charleston M, Porras-Alfaro A, Kuske CR, Cole JR, Midgley DJ, Nai TD (2016) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5.

    Article  PubMed  Google Scholar 

  28. 28.

    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Zaura E, Keijser BJF, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259.

  30. 30.

    Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Fan HW, Lu JB, Ye YX, Yu XP, Zhang CX (2016) Characteristics of the draft genome of “Candidatus Arsenophonus nilaparvatae”, a facultative endosymbiont of Nilaparvata lugens. Insect Sci 23:478–486.

  32. 32.

    Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci 107:769–774.

    Article  PubMed  Google Scholar 

  33. 33.

    Qu LY, Lou YH, Fan HW, Ye YX, Huang HJ, Hu MQ, Zhu YN, Zhang CX (2013) Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens. Symbiosis 61:47–53.

    Article  Google Scholar 

  34. 34.

    Page AP, Roberts M, Felix MA, Pickard D, Page A, Weir W (2019) The golden death bacillus Chryseobacterium nematophagum is a novel matrix digesting pathogen of nematodes. BMC Biol 17:10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Fan HW, Noda H, Xie HQ, Suetsugu Y, Zhu QH, Zhang CX (2015) Genomic analysis of an ascomycete fungus from the rice planthopper reveals how it adapts to an endosymbiotic lifestyle. Genome Biol Evol 7:2623–2634.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wan PJ, Yang L, Wang WX, Fan JM, Fu Q, Li GQ (2014) Constructing the major biosynthesis pathways for amino acids in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), based on the transcriptome data. Insect Mol Biol 23:152–164.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Brysch-Herzberg M (2004) Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Guzman B, Lachance MA, Herrera CM (2013) Phylogenetic analysis of the angiosperm-floricolous insect-yeast association: have yeast and angiosperm lineages co-diversified? Mol Phylogenet Evol 68:161–175.

    Article  PubMed  Google Scholar 

  40. 40.

    Ljunggren J, Borrero-Echeverry F, Chakraborty A, Lindblom TUT, Hedenstrom E, Karlsson M, Witzgall P, Bengtsson M (2019) Yeast volatomes differentially affect larval feeding in an insect herbivore. Appl Environ Microbiol 85:e01761-e1819.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Becher PG, Flick G, Rozpedowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828.

    Article  Google Scholar 

  42. 42.

    Yamada R, Deshpande SA, Bruce KD, Mak EM, Ja WW (2015) Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep 10:865–872.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Mason CJ, Campbell AM, Scully ED, Hoover K (2019) Bacterial and fungal midgut community dynamics and transfer between mother and brood in the Asian longhorned beetle (Anoplophora glabripennis), an invasive xylophage. Microb Ecol 77:230–242.

    Article  PubMed  Google Scholar 

  44. 44.

    Zhang Z, Jiao S, Li X, Li M (2018) Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci Rep 8:15634.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Li TP, Zha SS, Zhou CY, Gong JT, Zhu YX, Zhang X, Xi Z, Hong XY (2020) Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol Ecol 96:194.

    CAS  Article  Google Scholar 

  46. 46.

    Robinson CJ, Bohannan BJM, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 74:453.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Tasin M, Herrera SL, Knight AL, Barros-Parada W, Fuentes Contreras E, Pertot I (2018) Volatiles of grape inoculated with microorganisms: modulation of grapevine moth oviposition and field attraction. Microb Ecol 76:751–761.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Alamgir KM, Hojo Y, Christeller JT, Fukumoto K, Isshiki R, Shinya T, Baldwin IT, Galis I (2016) Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. Plant Cell Environ 39:453–466.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Wari D, Kabir MA, Mujiono K, Hojo Y, Shinya T, Tani A, Nakatani H, Galis I (2019) Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J Exp Bot 70:1683–1696.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sun S, Jones RB, Fodor AA (2020) Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8:46.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The study was supported by grants from the National Natural Science Foundation of China (32072462).

Author information




H.W. made substantial contribution to the design of the work. Z.J.R., Y.X., and C.Y.L. performed the experiments. Z.J.R. drafted the work. T.W.C. made contribution to the analysis. Y.H.Z. and K.K.M. revised it critically for important intellectual content. H.W., J.H.L., and S.H. provided facility, materials, and reagents.

Corresponding author

Correspondence to Hu Wan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.


Fig. S1 Violin plot of bacterial and fungal α-diversity indexes at different developmental stages of Nilaparvata lugens. (ac) Observed ASVs, evenness, and Faith’s PD of bacteria; (d, e) observed ASVs, evenness, and Faith’s PD of fungi (PDF 1.59 MB)

Supplementary file2 (XLSX 199 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Zhang, Y., Cai, T. et al. Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål). Microb Ecol (2021).

Download citation


  • Nilaparvata lugens
  • Microbiota structure
  • Development
  • Dynamic
  • Host-microbial interaction