Skip to main content

Advertisement

Log in

Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) on Soil Microbial Community

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The extensive application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) causes their frequent detection in various environments. In this work, two typical PFASs, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are selected to investigate their effects on soil microorganisms. Microbial community structure and microbe–microbe relationships were investigated by high-throughput sequencing and co-occurrence network analysis. Under 90 days of exposure, the alpha-diversity of soil microbial communities was increased with the PFOS treatment, followed by the PFOA treatment. The exposure of PFASs substantially changed the compositions of soil microbial communities, leading to the enrichment of more PFASs-tolerant bacteria, such as Proteobacteria, Burkholderiales, and Rhodocyclales. Comparative co-occurrence networks were constructed to investigate the microbe–microbe interactions under different PFASs treatments. The majority of nodes in the PFOA and PFOS networks were associated with the genus Azospirillum and Hydrogenophaga, respectively. The LEfSe analysis further identified a set of biomarkers in the soil microbial communities, such as Azospirillum, Methyloversatilis, Hydrogenophaga, Pseudoxanthomonas, and Fusibacter. The relative abundances of these biomarkers were also changed by different PFASs treatments. Functional gene prediction suggested that the microbial metabolism processes, such as nucleotide transport and metabolism, cell motility, carbohydrate transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis transport and catabolism, might be inhibited under PFAS exposure, which may further affect soil ecological services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available in the NCBI database under the project number PRJNA694469.

References

  1. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, De Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, De Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJIea, management (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. 7:513–541

  3. Lindstrom AB, Strynar MJ, Libelo EL (2011) Polyfluorinated compounds: past, present, and future. Environ Sci Technol 45:7954–7961

    Article  CAS  PubMed  Google Scholar 

  4. Rankin K, Mabury SA, Jenkins TM, Washington JW (2016) A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere 161:333–341

    Article  CAS  PubMed  Google Scholar 

  5. Seo S-H, Son M-H, Choi S-D, Lee D-H, Chang Y-S (2018) Influence of exposure to perfluoroalkyl substances (PFASs) on the Korean general population: 10-year trend and health effects. Environ Int 113:149–161

    Article  CAS  PubMed  Google Scholar 

  6. Mora AM, Oken E, Rifas-Shiman SL, Webster TF, Gillman MW, Calafat AM, Ye X, Sagiv SK (2017) Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid-childhood. Environ Health Perspect 125:467–473

    Article  CAS  PubMed  Google Scholar 

  7. Shahsavari E, Rouch D, Khudur LS, Thomas D, Aburto-Medina A, Ball AS (2021) Challenges and current status of the biological treatment of PFAS-contaminated soils. Front Bioeng Biotechnol 8

  8. Blake BE, Pinney SM, Hines EP, Fenton SE, Ferguson KK (2018) Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ Pollut 242:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steenland K, Kugathasan S, Barr DB (2018) PFOA and ulcerative colitis. Environ Res 165:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Graber JM, Alexander C, Laumbach RJ, Black K, Strickland PO, Georgopoulos PG, Marshall EG, Shendell DG, Alderson D, Mi Z (2019) Per and polyfluoroalkyl substances (PFAS) blood levels after contamination of a community water supply and comparison with 2013–2014 NHANES. J Eposure Sci Environ Epidemiol 29:172–182

    Article  CAS  Google Scholar 

  11. Steenland K, Winquist A (2020) PFAS and cancer, a scoping review of the epidemiologic evidence. Environ Res 110690

  12. Thompson J, Eaglesham G, Mueller J (2011) Concentrations of PFOS, PFOA and other perfluorinated alkyl acids in Australian drinking water. Chemosphere 83:1320–1325

    Article  CAS  PubMed  Google Scholar 

  13. Shi Y, Vestergren R, Xu L, Song X, Niu X, Zhang C, Cai Y (2015) Characterizing direct emissions of perfluoroalkyl substances from ongoing fluoropolymer production sources: A spatial trend study of Xiaoqing River, China. Environ Pollut 206:104–112

    Article  CAS  PubMed  Google Scholar 

  14. von der Trenck KT, Konietzka R, Biegel-Engler A, Brodsky J, Hädicke A, Quadflieg A, Stockerl R, Stahl T (2018) Significance thresholds for the assessment of contaminated groundwater: perfluorinated and polyfluorinated chemicals. Environ Sci Eur 30:19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eriksson U, Haglund P, Kärrman A (2017) Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs). J Environ Sci 61:80–90

    Article  CAS  Google Scholar 

  16. Eriksson U, Kärrman A (2015) World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust. Environ Sci Technol 49:14503–14511

    Article  CAS  PubMed  Google Scholar 

  17. Washington JW, Rankin K, Libelo EL, Lynch DG, Cyterski M (2019) Determining global background soil PFAS loads and the fluorotelomer-based polymer degradation rates that can account for these loads. Sci Total Environ 651:2444–2449

    Article  CAS  PubMed  Google Scholar 

  18. Brusseau ML, Anderson RH, Guo B (2020) PFAS concentrations in soils: background levels versus contaminated sites. Science of The Total Environment 740:140017

  19. Li F, Zhang C, Qu Y, Chen J, Chen L, Liu Y, Zhou Q (2010) Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. Sci Total Environ 408:617–623

    Article  CAS  PubMed  Google Scholar 

  20. Ruan T, Lin Y, Wang T, Liu R, Jiang G (2015) Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China. Environ Sci Technol 49:6519–6527

    Article  CAS  PubMed  Google Scholar 

  21. Cai Y, Chen H, Yuan R, Wang F, Chen Z, Zhou B (2020) Metagenomic analysis of soil microbial community under PFOA and PFOS stress. Environ Res 188:109838

  22. Li B, Xu R, Sun X, Han F, Xiao E, Chen L, Qiu L, Sun W (2021) Microbiome–environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere 263:128227

  23. Xu R, Sun X, Han F, Li B, Xiao E, Xiao T, Yang Z, Sun W (2020) Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river. Sci Total Environ 713:136451

  24. Sun X, Kong T, Häggblom MM, Kolton M, Li F, Dong Y, Huang Y, Li B, Sun W (2020) Chemolithoautotropic diazotrophy dominates the nitrogen fixation process in mine tailings. Environ Sci Technol 54:6082–6093

    Article  CAS  PubMed  Google Scholar 

  25. Yu X, Nishimura F, Hidaka T (2018) Impact of long-term perfluorooctanoic acid (PFOA) exposure on activated sludge process. Water Air Soil Pollut 229:1–12

    Article  Google Scholar 

  26. Qiao W, Xie Z, Zhang Y, Liu X, Xie S, Huang J, Yu L (2018) Perfluoroalkyl substances (PFASs) influence the structure and function of soil bacterial community: Greenhouse experiment. Sci Total Environ 642:1118–1126

    Article  CAS  PubMed  Google Scholar 

  27. Bao Y, Li B, Xie S, Huang J (2018) Vertical profiles of microbial communities in perfluoroalkyl substance-contaminated soils. Ann Microbiol 68:399–408

    Article  CAS  Google Scholar 

  28. Liu G, Zhang S, Yang K, Zhu L, Lin D (2016) Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. Environ Pollut 214:806–815

    Article  CAS  PubMed  Google Scholar 

  29. Nobels I, Dardenne F, De Coen W, Blust R (2010) Application of a multiple endpoint bacterial reporter assay to evaluate toxicological relevant endpoints of perfluorinated compounds with different functional groups and varying chain length. Toxicol In Vitro 24:1768–1774

    Article  CAS  PubMed  Google Scholar 

  30. Yu X, Nishimura F, Hidaka T (2018) Impact of Long-Term Perfluorooctanoic Acid (PFOA) Exposure on activated sludge process. Water Air Soil Pollut 229:134

    Article  Google Scholar 

  31. Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Article  PubMed  Google Scholar 

  32. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538

    Article  CAS  PubMed  Google Scholar 

  33. Zengler K, Zaramela LS (2018) The social network of microorganisms — how auxotrophies shape complex communities. Nat Rev Microbiol 16:383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: Networks, competition, and stability. Science 350:663

    Article  CAS  PubMed  Google Scholar 

  35. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199

    Article  CAS  PubMed  Google Scholar 

  36. Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu R, Sun X, Lin H, Han F, Xiao E, Li B, Qiu L, Song B, Yang Z, Sun W (2020) Microbial adaptation in vertical soil profiles contaminated by an antimony smelting plant. FEMS Microbiol Ecol 96:1–12

    Article  Google Scholar 

  38. Sun X, Xu R, Dong Y, Li F, Tao W, Kong T, Zhang M, Qiu L, Wang X, Sun W (2020) Investigation of the ecological roles of putative keystone taxa during tailing revegetation. Environ Sci Technol 54:11258–11270

    Article  CAS  PubMed  Google Scholar 

  39. Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira A, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2

  40. Xu R, Sun X, Häggblom MM, Dong Y, Zhang M, Yang Z, Xiao E, Xiao T, Gao P, Li B, Sun W (2021) Metabolic potentials of members of the class Acidobacteriia in metal-contaminated soils revealed by metagenomic analysis. Environ Microbiol n/a

  41. Rhine ED, Phelps CD, Young LY (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Zhong G, Li W, Mejia Avendaño S (2019) Isomer-specific biotransformation of perfluoroalkyl sulfonamide compounds in aerobic soil. Sci Total Environ 651:766–774

    Article  CAS  PubMed  Google Scholar 

  43. Bolan N, Sarkar B, Yan Y, Li Q, Wijesekara H, Kannan K, Tsang DCW, Schauerte M, Bosch J, Noll H, Ok YS, Scheckel K, Kumpiene J, Gobindlal K, Kah M, Sperry J, Kirkham MB, Wang H, Tsang YF, Hou D, Rinklebe J (2021) Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – to mobilize or to immobilize or to degrade? J Hazard Mater 401:123892

  44. Xiao E, Cui J, Sun W, Jiang S, Huang M, Kong D, Wu Q, Xiao T, Sun X, Ning Z (2021) Root microbiome assembly of As-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition. Environ Microbiol 23:1959–1971

    Article  CAS  PubMed  Google Scholar 

  45. Xu R, Yang Z, Wang Q, Bai Y, Liu J, Zheng Y, Zhang Y, Xiong W, Ahmad K, Fan C (2018) Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge. Sci Total Environ 612:788–798

    Article  CAS  PubMed  Google Scholar 

  46. Xu R, Yang Z, Zheng Y, Zhang H, Liu J, Xiong W, Zhang Y, Ahmad K (2017) Depth-resolved microbial community analyses in the anaerobic co-digester of dewatered sewage sludge with food waste. Biores Technol 244:824–835

    Article  CAS  Google Scholar 

  47. Zhang Y, Xu R, Xiang Y, Lu Y, Jia M, Huang J, Xu Z, Cao J, Xiong W, Yang Z (2020) Addition of nanoparticles increases the abundance of mobile genetic elements and changes microbial community in the sludge anaerobic digestion system. J Hazard Mater 405:124206

  48. Yang Z, Xu R, Zheng Y, Chen T, Zhao L, Li M (2016) Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease. Biores Technol 212:164–173

    Article  CAS  Google Scholar 

  49. Xiao E, Ning Z, Xiao T, Sun W, Jiang S (2021) Soil bacterial community functions and distribution after mining disturbance. Soil Biol Biochem 157:108232

  50. Xu R, Xu S, Florentino AP, Zhang L, Yang Z, Liu Y (2019) Enhancing blackwater methane production by enriching hydrogenotrophic methanogens through hydrogen supplementation. Biores Technol 278:481–485

    Article  CAS  Google Scholar 

  51. Langille MGI, Zaneveld J, Caporaso JG, Mcdonald D, Dan K, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu R, Zhang Y, Xiong W, Sun W, Fan Q, Zhaohui Y (2020) Metagenomic approach reveals the fate of antibiotic resistance genes in a temperature-raising anaerobic digester treating municipal sewage sludge. J Clean Prod 277:123504

  53. Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15:799–821

    Article  CAS  PubMed  Google Scholar 

  54. Gao P, Song B, Xu R, Sun X, Lin H, Xu F, Li B, Sun W (2021) Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites. Environ Sci Pollut Res

  55. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu R, Yang Z, Zheng Y, Wang Q, Bai Y, Liu J, Zhang Y, Xiong W, Lu Y, Fan C (2019) Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk. Biores Technol 282:179–188

    Article  CAS  Google Scholar 

  57. Xu R, Li B, Xiao E, Young LY, Sun X, Kong T, Dong Y, Wang Q, Yang Z, Chen L, Sun W (2020) Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Environ Pollut 261:114226

  58. Sun W, Sun X, Li B, Xu R, Young LY, Dong Y, Zhang M, Kong T, Xiao E, Wang Q (2020) Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: Relevance of C, N, and S cycling and metal resistance. Environ Int 138:105601

  59. Li B, Xu R, Sun X, Han F, Xiao E, Chen L, Qiu L, Sun W (2021) Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere 263

  60. Sun X, Song B, Xu R, Zhang M, Gao P, Lin H, Sun W (2021) Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. J Environ Sci 104:387–398

    Article  Google Scholar 

  61. Ke Y, Chen J, Hu X, Tong T, Huang J, Xie S (2020) Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation. Environ Pollut 257:113615

  62. Zhang S, Merino N, Wang N, Ruan T, Lu X (2017) Impact of 6:2 fluorotelomer alcohol aerobic biotransformation on a sediment microbial community. Sci Total Environ 575:1361–1368

    Article  CAS  PubMed  Google Scholar 

  63. Li B, Bao Y, Xu Y, Xie S, Huang J (2017) Vertical distribution of microbial communities in soils contaminated by chromium and perfluoroalkyl substances. Sci Total Environ 599–600:156–164

    Article  PubMed  Google Scholar 

  64. Tardy V, Mathieu O, Lévêque J, Terrat S, Chabbi A, Lemanceau P, Ranjard L, Maron PA (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183

    Article  CAS  PubMed  Google Scholar 

  65. Maron P-A, Sarr A, Kaisermann A, Lévêque J, Mathieu O, Guigue J, Karimi B, Bernard L, Dequiedt S, Terrat S (2018) High microbial diversity promotes soil ecosystem functioning. Appl Environ Microbiol 84

  66. Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS (2019) The global soil community and its influence on biogeochemistry. Science 365

  67. Yang G, Zhang N, Yang J, Fu Q, Wang Y, Wang D, Tang L, Xia J, Liu X, Li X, Yang Q, Liu Y, Wang Q, Ni B-J (2020) Interaction between perfluorooctanoic acid and aerobic granular sludge. Water Res 169:115249

  68. Wang Y, Zhang X, Wang M, Cao Y, Wang X, Liu Y, Wang J, Wang J, Wu L, Hei TK, Luan Y, Xu A (2015) Mutagenic effects of perfluorooctanesulfonic acid in gpt Delta transgenic system are mediated by hydrogen peroxide. Environ Sci Technol 49:6294–6303

    Article  CAS  PubMed  Google Scholar 

  69. Choi SK, Kim JH, Park JK, Lee KM, Kim E, Jeon WB (2013) Cytotoxicity and inhibition of intercellular interaction in N2a neurospheroids by perfluorooctanoic acid and perfluorooctanesulfonic acid. Food Chem Toxicol 60:520–529

    Article  CAS  PubMed  Google Scholar 

  70. Qian Y, Ducatman A, Ward R, Leonard S, Bukowski V, Lan Guo N, Shi X, Vallyathan V, Castranova V (2010) Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J Toxicol Environ Health 73:819–836

    Article  CAS  Google Scholar 

  71. Hu W, Jones PD, DeCoen W, King L, Fraker P, Newsted J, Giesy JP (2003) Alterations in cell membrane properties caused by perfluorinated compounds. Comp Biochem Physiol C Toxicol Pharmacol 135:77–88

    Article  PubMed  Google Scholar 

  72. Banerjee S, Schlaeppi K, Mga VDH (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:1

    Article  Google Scholar 

  73. Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol Biochem 103:117–130

    Article  Google Scholar 

  74. Gan HM, Shahir S, Ibrahim Z, Yahya A (2011) Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant. Chemosphere 82:507–513

    Article  CAS  PubMed  Google Scholar 

  75. Xu C, Zang X, Hang X, Liu X, Yang H, Liu X, Jiang J (2017) Degradation of three monochlorobenzoate isomers by different bacteria isolated from a contaminated soil. Int Biodeterior Biodegradation 120:192–202

    Article  CAS  Google Scholar 

  76. Yan Z, Zhang Y, Wu H, Yang M, Zhang H, Hao Z, Jiang H (2017) Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo [a] pyrene biodegradation. RSC Adv 7:46690–46698

    Article  CAS  Google Scholar 

  77. Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56:2517–2522

    Article  CAS  PubMed  Google Scholar 

  78. Firsova J, Doronina N, Lang E, Spröer C, Vuilleumier S, Trotsenko Y (2009) Ancylobacter dichloromethanicus sp. nov. – a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Syst Appl Microbiol 32:227–232

    Article  CAS  PubMed  Google Scholar 

  79. Cai T, Qian L, Cai S, Chen L (2011) Biodegradation of benazolin-ethyl by strain Methyloversatilis sp. cd-1 isolated from activated sludge. Curr Microbiol 62:570–577

    Article  CAS  PubMed  Google Scholar 

  80. Navarro I, de la Torre A, Sanz P, Porcel MÁ, Pro J, Carbonell G, MdlÁ M (2017) Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ Res 152:199–206

    Article  CAS  PubMed  Google Scholar 

  81. Rich CD, Blaine AC, Hundal L, Higgins CP (2015) Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils. Environ Sci Technol 49:881–888

    Article  CAS  PubMed  Google Scholar 

  82. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  83. Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25:280–292

    Article  CAS  PubMed  Google Scholar 

  84. Zhang W, Lin K-F, Yang S-S, Zhang M (2013) Enzyme activities in perfluorooctanoic acid (PFOA)-polluted soils. Pedosphere 23:120–127

    Article  Google Scholar 

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42007357 and 41771301), the China Postdoctoral Science Foundation (Grant Nos. 2020T130127 and 2019M662825), the Science and Technology Planning Project of Guangzhou (Grant No. 202002030271), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110351), GDAS’ Project of Science and Technology Development (Grant Nos. 2020GDASYL-20200103086, 2020GDASYL-20200102015, 2020GDASYL-20200102014, and 2019GDASYL-0301002), Guangdong Foundation for Program of Science and Technology Research (Grant No. 2019B121205006), and Guangdong Introducing Innovative and Entrepreneurial Talents (Grant No. 2017GC010570).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Weimin Sun, Rui Xu; Methodology: Rui Xu, Wan Tao, Xiaoxu Sun; Formal analysis and investigation: Hanzhi Lin; Writing—original draft preparation: Wan Tao, Duanyi Huang; Writing—review and editing: Rui Xu, Pin Gao, Zhaohui Yang; Funding acquisition: Rui Xu, Weimin Sun; Supervision: Weimin Sun.

Corresponding author

Correspondence to Weimin Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Rui Xu and Wan Tao are contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Tao, W., Lin, H. et al. Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) on Soil Microbial Community. Microb Ecol 83, 929–941 (2022). https://doi.org/10.1007/s00248-021-01808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01808-6

Keywords

Navigation