Skip to main content

Two Apriona Species Sharing a Host Niche Have Different Gut Microbiome Diversity

Abstract

The adaptability of herbivorous insects to toxic plant defense compounds is partly related to the structure of the gut microbiome. To overcome plant resistance, the insect gut microbiome should respond to a wide range of allelochemicals derived from dietary niches. Nevertheless, for sibling herbivorous insect species, whether the gut microbiome contributes to success in food niche competition is unclear. Based on 16S rDNA high-throughput sequencing, the gut microbiomes of two Apriona species that share the same food niche were investigated in this study to determine whether the gut microbiome contributes to insect success in food-niche competition. Our observations indicated that the gut microbiome tended to play a part in host niche competition between the two Apriona species. The gut microbiome of Apriona swainsoni had many enriched pathways that can help degrade plant toxic secondary compounds, including xenobiotic biodegradation and metabolism, terpenoid and polyketide metabolism, and secondary metabolite biosynthesis. Meanwhile, A. swainsoni hosted a much greater variety of microorganisms and had more viable bacteria than A. germari. We conclude that gut microbes may influence the coevolution of herbivores and host plants. Gut bacteria may not only serve to boost nutritional relationships, but may also play an important role in insect food niche competition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19:207–233

    Article  Google Scholar 

  2. 2.

    Bird G, Kaczvinsky C, Wilson AE, Hardy NB (2019) When do herbivorous insects compete? A phylogenetic meta-analysis. Ecol. Lett. 22:875–883

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Resetarits WJ, Pintar MR, Bohenek JR, Breech TM (2019) Patch size as a niche dimension: aquatic insects behaviorally partition enemy-free space across gradients of patch size. Am. Nat. 194:776–793

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Mirabasso J, Bissattini AM, Bologna MA, Luiselli L, Stellati L, Vignoli L (2020) Feeding strategies of co-occurring newt species across different conditions of syntopy: a test of the “within-population niche variation” hypothesis. Diversity 12:181

    CAS  Article  Google Scholar 

  5. 5.

    Theunissen J (1994) Intercropping in field vegetable crops: pest management by agrosystem diversification—an overview. J. Pestic. Sci. 42:65–68

    Article  Google Scholar 

  6. 6.

    Shaw B, Brain P, Wijnen H, Fountain MT (2018) Reducing Drosophila suzukii emergence through inter-species competition. Pest Manag. Sci. 74:1466–1471

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Brévault T, Clouvel P (2019) Pest management: reconciling farming practices and natural regulations. Crop Prot. 115:1–6

    Article  Google Scholar 

  8. 8.

    Falahzadah MH, Karimi J, Gaugler R (2020) Biological control chance and limitation within integrated pest management program in Afghanistan. Egyp J Biol Pest Co 30:1–10

    Article  Google Scholar 

  9. 9.

    Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47:817–844

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Hardy NB, Kaczvinsky C, Bird G, Normark BB (2020) What we don't know about diet-breadth evolution in herbivorous insects. Annu Rev Ecol Evol Syst. https://doi.org/10.1146/annurev-ecolsys-011720-023322

  11. 11.

    Toju H, Abe H, Ueno S, Miyazawa Y, Taniguchi F, Sota T, Yahara T (2011) Climatic gradients of arms race coevolution. Am. Nat. 177:562–573

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Mopper S (1996) Adaptive genetic structure in phytophagous insect populations. Trends Ecol. Evol. 11:235–238

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P (2012) Parallel molecular evolution in an herbivore community. Science 337:1634–1637

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Dobler S, Petschenka G, Wagschal V, Flacht L (2015) Convergent adaptive evolution–how insects master the challenge of cardiac glycoside-containing host plants. Entomol Exp Appl 157:30–39

    CAS  Article  Google Scholar 

  15. 15.

    Okamura Y, Sato A, Tsuzuki N, Murakami M, Heidel-Fischer H, Vogel H (2019) Molecular signatures of selection associated with host plant differences in Pieris butterflies. Mol. Ecol. 28:4958–4970

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Giordano R, Donthu RK, Zimin A, Chavez ICJ, Gabaldon T, van Munster M et al (2020) Soybean aphid biotype 1 genome: insights into the invasive biology and adaptive evolution of a major agricultural pest. Insect Biochem Mol Biol. https://doi.org/10.1016/j.ibmb.2020.103334

  17. 17.

    Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Shaw BD, Christeller JT (2009) Characterization of the proteases in the midgut of the xylophagous larvae of Oemona hirta (Coleoptera: Cerambycidae). Insect Sci 16:381–386

    CAS  Article  Google Scholar 

  19. 19.

    Faccoli M, Favaro R (2016) Host preference and host colonization of the Asian longhorn beetles, Anoplophora glabripennis (Coleoptera Cerambycidae), in southern Europe. B Entomol Res 106:359

    CAS  Article  Google Scholar 

  20. 20.

    Wang L, Qu L, Zhang L, Hu J, Tang F, Lu M (2016) Metabolic responses of poplar to Apripona germari (Hope) as revealed by metabolite profiling. Int. J. Mol. Sci. 17:923

    PubMed Central  Article  Google Scholar 

  21. 21.

    Li S (2016) Damage of Apriona swainsoni (Hope) on Sophora japonica Linn, in Pingdingshan area. Plant Dis Pests 7:16–18

    CAS  Google Scholar 

  22. 22.

    Rim K, Golec JR, Duan JJ (2018) Host selection and potential non-target risk of Dastarcus helophoroides, a larval parasitoid of the Asian longhorned beetle, Anoplophora glabripennis. Biol. Control 123:120–126

    Article  Google Scholar 

  23. 23.

    Ma Y, Shi L, Zhao Y, Xu H (2018) Comparison of volatiles released from the host Juglans mandshurica in different damaged states and the GC-EAD and behavioral responses of Apriona germari (Coleoptera: Cerambycidae) to these volatiles. Acta Entom Sinica 61:574–584

    Google Scholar 

  24. 24.

    Cai Y, Qiu F, Huang K, Zhang X, Hong W, Huang J (2020) Microbiological safety evaluation of edible bucket worms. J Agri Biot 28:1675–1687

    Google Scholar 

  25. 25.

    Zhang SK, Shu JP, Xue HJ, Zhang W, Zhang YB, Liu YN, Fang LX, Wang YD, Wang HJ (2020) The gut microbiota in camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems 5. https://doi.org/10.1128/mSystems.00692-19

  26. 26.

    Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29:913–920

    CAS  Article  Google Scholar 

  27. 27.

    Sengottayan SN (2013) Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against lepidopteran insects. Front. Physiol. 4:359

    Google Scholar 

  28. 28.

    AlJabr AM, Hussain A, Rizwan-ul-Haq M, Al-Ayedh H (2017) Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22:169

    PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Stevenson P (2020) For antagonists and mutualists: the paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 19:603–614

    CAS  Article  Google Scholar 

  30. 30.

    Yactayo-Chang JP, Tang HV, Mendoza J, Christensen SA, Block AK (2020) Plant defense chemicals against insect pests. Agronomy 10:1156

    CAS  Article  Google Scholar 

  31. 31.

    Carmona D, Lajeunesse MJ, Johnson MT (2011) Plant traits that predict resistance to herbivores. Funct. Ecol. 25:358–367

    Article  Google Scholar 

  32. 32.

    Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63:431–450

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33.

    Turnbull LA, Isbell F, Purves DW, Loreau M, Hector A (2016) Understanding the value of plant diversity for ecosystem functioning through niche theory. P Roy Soc B: Biol Sci 283:20160536

    Google Scholar 

  34. 34.

    Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton JT, Amir A, McKenzie VJ, Humphrey G, Gogul G, Gaffney J, Baden AL, Britton GAO, Cuozzo FP, Di Fiore A, Dominy NJ, Goldberg TL, Gomez A, Kowalewski MM, Lewis RJ, Link A, Sauther ML, Tecot S, White BA, Nelson KE, Stumpf RM, Knight R, Leigh SR (2019) Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiome. ISME J 13:576–587

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Gupta A, Nair S (2020) Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11:1357

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Kundu P, Manna B, Majumder S, Ghosh A (2019) Species-wide metabolic interaction network for understanding natural lignocellulose digestion in termite gut microbiota. Sci. Rep. 9:1–13

    Google Scholar 

  38. 38.

    Zhang ZJ, Huang MF, Qiu LF, Song RH, Zhang ZX, Ding YW, Zhou X, Zhang X, Zheng H (2020) Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella. Insect Sci. https://doi.org/10.1111/1744-7917.12770

  39. 39.

    Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Front. Physiol. 9:364

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP (2016) Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31:689–699

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Zhang SK, Shu JP, Xue HJ, Zhang W, Wang HJ (2018) Genetic diversity in the camellia weevil, Curculio chinensis Chevrolat (Coleoptera: Curculionidae) and inferences for the impact of host plant and human activity. Entomol Sci 21:447–460

    Article  Google Scholar 

  43. 43.

    Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

  46. 46.

    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35:7188–7196

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Domik D, Thürmer A, Weise T, Brandt W, Daniel R, Piechulla B (2016) A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13. Front. Microbiol. 7:737

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Wickham H (2011) ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3:180–185

  49. 49.

    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res. 19:1639–1645

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Kolde R, Kolde MR (2015) Package ‘pheatmap’. R Package 1:790

    Google Scholar 

  51. 51.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12:1–18

    Article  Google Scholar 

  52. 52.

    Csardi MG (2013) Package ‘igraph’. Last accessed 3:2013

    Google Scholar 

  53. 53.

    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10:57–59

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Robin F, Dubois C, Curti D, Schuchmann HP, Palzer S (2011) Effect of wheat bran on the mechanical properties of extruded starchy foams. Food Res. Int. 44:2880–2888

    CAS  Article  Google Scholar 

  56. 56.

    Hamilton NE, Ferry M (2018) Ggtern: ternary diagrams using ggplot2. J. Stat. Softw. 87:1–17

    Article  Google Scholar 

  57. 57.

    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16s rDNA marker gene sequences. Nat. Biotechnol. 31:814–821

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear JR, Caporaso G, Blekhman R, Knight R, Fink R, Knights D (2017) BugBase predicts organism-level microbiome phenotypes. BioRxiv p.133462

  60. 60.

    Bekir J, Mars M, Vicendo P, Fterrich A, Bouajila J (2013) Chemical composition and antioxidant, anti-inflammatory, and antiproliferation activities of pomegranate (Punica granatum) flowers. J. Med. Food 2013(16):544–550

    Article  CAS  Google Scholar 

  61. 61.

    Sheng Z, Wan P, Dong C, Li Y (2013) Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Ind. Crop. Prod. 43:778–786

    CAS  Article  Google Scholar 

  62. 62.

    Tomar O (2019) The effects of probiotic cultures on the organic acid content, texture profile and sensory attributes of Tulum cheese. Int. J. Dairy Technol. 72:218–228

    CAS  Article  Google Scholar 

  63. 63.

    Wang Z, Wen J, Xing J, He Y (2006) Quantitative determination of diterpenoid alkaloids in four species of Aconitum by HPLC. J Pharmaceut Biomed 40:1031–1034

    CAS  Article  Google Scholar 

  64. 64.

    Itoh H, Tago K, Hayatsu M, Kikuchi Y (2018) Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 35:434–454

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Friberg M, Posledovich D, Wiklund C (2015) Decoupling of female host plant preference and offspring performance in relative specialist and generalist butterflies. Oecologia 178:1181–1192

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Kelly CA, Bowers MD (2016) Preference and performance of generalist and specialist herbivores on chemically defended host plants. Ecol Entom 41:308–316

    Article  Google Scholar 

  67. 67.

    Morera-Margarit P, Pope TW, Mitchell C, Karley AJ (2020) Could bacterial associations determine the success of weevil species? Ann Appl Biol doi. https://doi.org/10.1111/aab.12625

  68. 68.

    Vanbergen AJ, Espíndola A, Aizen MA (2018) Risks to pollinators and pollination from invasive alien species. Nat Ecol Evol 2:16–25

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126–138

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Cheng C, Wickham JD, Chen L, Xu D, Lu M, Sun J (2018) Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Microbiome 6:132

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Mason CJ, Jones AG, Felton GW (2019) Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. 42:1078–1086

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58:879–891

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  74. 74.

    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23:1473–1496

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, Luthe DS, Hoover K, Felton GW (2019) Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. P Natl A Sci 116:15991–15996

    CAS  Article  Google Scholar 

  77. 77.

    Wei J, Segraves KA, Li WZ, Yang XK, Xue HJ (2020) Gut bacterial communities and their contribution to performance of specialist Altica flea beetles. Microb. Ecol. 80:946–959

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Wang Y. for helping with longhorn beetle collection, Prof. J. P. S. for valuable discussions. S. K. Z., Y. W. contributed fieldwork. S. K. Z., Y. W. and Z. K. L. performed the laboratory experiments and analyzed the data. X. D. Z. and J. H. H. coordinated the study and participated in conceptual design and manuscript preparation. S. K. Z., W.Y. performed most of the work for conceptual design and manuscript preparation. All authors read and approved the final manuscript.

Funding

This work was supported by the Cooperation Project of Zhejiang Province and Chinese Academy of Forestry (Grant No. 2020SY08).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xu-Dong Zhou or Jun-Hao Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 21 kb)

ESM 2

(DOCX 13149 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, SK., Wang, Y., Li, ZK. et al. Two Apriona Species Sharing a Host Niche Have Different Gut Microbiome Diversity. Microb Ecol (2021). https://doi.org/10.1007/s00248-021-01799-4

Download citation

Keywords

  • Gut microbiome
  • Apriona
  • Niche competing
  • Secondary metabolic compounds
  • Niche adaptation