Skip to main content

Advertisement

Log in

Monitoring Infection and Antibiotic Treatment in the Skin Microbiota of Farmed European Seabass (Dicentrarchus Labrax) Fingerlings

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The microbiota of fish skin, the primary barrier against disease, is highly dynamic and modulated by several factors. In fish aquaculture, disease outbreaks occur mainly during early-life stages, with associated high economic losses. Antibiotic treatments sometimes remain the best option to control bacterial diseases, despite many reported negative impacts of its use on fish and associated microbiota. Notwithstanding, studies monitoring the effects of disease and antibiotic treatment on the microbiota of fingerlings are scarce. We sequenced the bacterial 16S rRNA V4 gene region using a metabarcoding approach to assess the impact of a mixed infection with Photobacterium damselae ssp. piscicida and Vibrio harveyi and subsequent antibiotic treatment with flumequine, on the skin microbiota of farmed seabass (Dicentrarchus labrax) fingerlings. Both infection and antibiotic treatment led to a significant increase in bacterial diversity and core microbial communities and impacted microbiome structure. Dysbiosis was confirmed by changes in the abundance of potential pathogenic and opportunistic bacterial taxa. Skin bacterial metabolic function was also significantly affected by flumequine administration, suggesting a detriment to fish skin health. Our results add to an increasing body of literature, showing how fish microbiome response to infection and antibiotics cannot be easily predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw sequences are available at NCBI Sequence Read Archive (SRA) database within the BioProject ID PRJNA741392.

References

  1. Kelly C, Salinas I (2017) Under pressure: interactions between commensal microbiota and the teleost immune system. Front Immunol 8:1

    Article  Google Scholar 

  2. Trivedi B (2012) Microbiome: the surface brigade. Nature 492:S60–S61

    Article  CAS  PubMed  Google Scholar 

  3. Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033. https://doi.org/10.1111/cmi.12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Osadchiy V, Martin CR, Mayer EA (2019) The gut–brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol 17:322–332

    Article  CAS  PubMed  Google Scholar 

  5. Legrand TPRA, Catalano SR, Wos-Oxley ML et al (2018) The inner workings of the outer surface: skin and gill microbiota as indicators of changing gut health in yellowtail kingfish. Front Microbiol 8:2664. https://doi.org/10.3389/fmicb.2017.02664

    Article  PubMed  PubMed Central  Google Scholar 

  6. Llewellyn MS, Leadbeater S, Garcia C et al (2017) Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci Rep 7:1–10. https://doi.org/10.1038/srep43465

    Article  Google Scholar 

  7. Rosado D, Xavier R, Severino R et al (2019) Effects of disease, antibiotic treatment and recovery trajectory on the microbiome of farmed seabass (Dicentrarchus labrax). Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-55314-4

    Article  CAS  Google Scholar 

  8. Rosado D, Pérez-Losada M, Pereira A et al (2021) Effects of aging on the skin and gill microbiota of farmed seabass and seabream. Anim Microbiome 3:10. https://doi.org/10.1186/s42523-020-00072-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reid KM, Patel S, Robinson AJ et al (2017) Salmonid alphavirus infection causes skin dysbiosis in Atlantic salmon (Salmo salar L.) post-smolts. PLoS One 12:e0172856. https://doi.org/10.1371/journal.pone.0172856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borges N, Keller-Costa T, Sanches-Fernandes GMM et al (2020) Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu Rev Anim Biosci 9:423–452. https://doi.org/10.1146/annurev-animal-062920

    Article  PubMed  Google Scholar 

  11. Parshukov AN, Kashinskaya EN, Simonov EP et al (2019) Variations of the intestinal gut microbiota of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), depending on the infection status of the fish. J Appl Microbiol 127:379–395. https://doi.org/10.1111/jam.14302

    Article  CAS  PubMed  Google Scholar 

  12. Tran NT, Zhang J, Xiong F et al (2018) Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus). World J Microbiol Biotechnol 34:71. https://doi.org/10.1007/s11274-018-2447-2

    Article  CAS  PubMed  Google Scholar 

  13. Le Luyer J, Schull Q, Auffret P et al (2021) Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection. Anim Microbiome. https://doi.org/10.21203/rs.3.rs-108248/v1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Ding L, Yu Y et al (2018) The change of teleost skin commensal microbiota is associated with skin mucosal transcriptomic responses during parasitic infection by Ichthyophthirius multifillis. Front Immunol 9:2972. https://doi.org/10.3389/fimmu.2018.02972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vasemägi A, Visse M, Kisand V (2017) Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. mSphere 2:418–435. https://doi.org/10.1128/msphere.00418-17

    Article  CAS  Google Scholar 

  16. Miyake S, Soh M, Nursyafiq Azman M et al (2020) Insights into the microbiome of farmed Asian sea bass (Lates calcarifer) with symptoms of tenacibaculosis and description of Tenacibaculum singaporense sp. nov. Antonie Van Leeuwenhoek 113:737–752. https://doi.org/10.1007/s10482-020-01391-9

    Article  CAS  PubMed  Google Scholar 

  17. FAO (2016) FAO Fisheries & Aquaculture - Cultured Aquatic Species Information Programme - Dicentrarchus labrax (Linnaeus, 1758). http://www.fao.org/fishery/culturedspecies/Dicentrarchus_labrax/en. Accessed 12 Feb 2021

  18. Deng Y, Zhang Y, Chen H, et al (2020) Gut–liver immune response and gut microbiota profiling reveal the pathogenic mechanisms of Vibrio harveyi in pearl gentian grouper (Epinephelus lanceolatus ♂ × E. fuscoguttatus ♀). Front Immunol 11:1. https://doi.org/10.3389/fimmu.2020.607754

  19. Essam HM, Abdellrazeq GS, Tayel SI et al (2016) Pathogenesis of Photobacterium damselae subspecies infections in sea bass and sea bream. Microb Pathog 99:41–50. https://doi.org/10.1016/j.micpath.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  20. Mohamad N, Amal MNA, Yasin ISM et al (2019) Vibriosis in cultured marine fishes: a review. Aquaculture 512:734289. https://doi.org/10.1016/j.aquaculture.2019.734289

    Article  Google Scholar 

  21. Bakopoulos V, Volpatti D, Gusmani L et al (2003) Vaccination trials of sea bass, Dicentrarchus labrax (L.), against Photobacterium damsela subsp. piscicida, using novel vaccine mixtures. J Fish Dis 26:77–90. https://doi.org/10.1046/j.1365-2761.2003.00438.x

    Article  CAS  PubMed  Google Scholar 

  22. Almeida AR, Alves M, Domingues I, Henriques I (2019) The impact of antibiotic exposure in water and zebrafish gut microbiomes: a 16S rRNA gene-based metagenomic analysis. Ecotoxicol Environ Saf 186:109771. https://doi.org/10.1016/j.ecoenv.2019.109771

    Article  CAS  PubMed  Google Scholar 

  23. Almeida AR, Tacão M, Machado AL et al (2019) Long-term effects of oxytetracycline exposure in zebrafish: a multi-level perspective. Chemosphere 222:333–344. https://doi.org/10.1016/j.chemosphere.2019.01.147

    Article  CAS  PubMed  Google Scholar 

  24. Carlson JM, Leonard AB, Hyde ER et al (2017) Microbiome disruption and recovery in the fish Gambusia affinis following exposure to broad-spectrum antibiotic. Infect Drug Resist 10:143–154. https://doi.org/10.2147/IDR.S129055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pindling S, Azulai D, Zheng B et al (2018) Dysbiosis and early mortality in zebrafish larvae exposed to subclinical concentrations of streptomycin. FEMS Microbiol Lett 365:188. https://doi.org/10.1093/femsle/fny188

    Article  CAS  Google Scholar 

  26. De Liguoro M, Maraj S, Merlanti R (2019) Transgenerational toxicity of flumequine over four generations of Daphnia magna. Ecotoxicol Environ Saf 169:814–821. https://doi.org/10.1016/j.ecoenv.2018.11.077

    Article  CAS  PubMed  Google Scholar 

  27. FAO (1997) Residues of some veterinary drugs in animals and foods. Food and Nutrition Paper 14:10

  28. Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31. https://doi.org/10.1186/s40168-015-0094-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  32. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lahti L, Shetty S (2018) Introduction to the microbiome R package. https://bioconductor.statistik.tu-dortmund.de/packages/3.6/bioc/vignettes/microbiome/inst/doc/vignette.html

  35. Oksanen J, Kindt R, Legendre P et al (2008) The vegan package: community ecology package, version 1, pp 13–1. http://vegan.r-forge.r-project.org

  36. Douglas GM, Maffei VJ, Zaneveld J, et al (2019) PICRUSt2: an improved and extensible approach for metagenome inference. bioRxiv 672295

  37. Kanehisa M, Sato Y, Furumichi M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595. https://doi.org/10.1093/nar/gky962

    Article  CAS  PubMed  Google Scholar 

  38. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  39. Austin B, Austin DA (2016) Bacterial fish pathogens, 6th edn. Springer, Stirling

    Book  Google Scholar 

  40. Joe JTX, Tseng YC, Wu JL, Lu MW (2021) The alteration of intestinal microbiota profile and immune response in Epinephelus coioides during pathogen infection. Life 11:1–18. https://doi.org/10.3390/life11020099

    Article  CAS  Google Scholar 

  41. Laganà P, Caruso G, Minutoli E et al (2011) Susceptibility to antibiotics of Vibrio spp. and Photobacterium damsela ssp. piscicida strains isolated from Italian aquaculture farms. New Microbiol 34:53–63

    PubMed  Google Scholar 

  42. Stevens J, Jackson R, Olson J (2016) Bacteria associated with lionfish (Pterois volitans/miles complex) exhibit antibacterial activity against known fish pathogens. Mar Ecol Prog Ser 558:167–180. https://doi.org/10.3354/meps11789

    Article  CAS  Google Scholar 

  43. Wu J, Mao C, Deng Y et al (2019) Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. Mar Pollut Bull 141:343–349. https://doi.org/10.1016/j.marpolbul.2019.02.069

    Article  CAS  PubMed  Google Scholar 

  44. López Nadal A, Peggs D, Wiegertjes GF, Brugman S (2018) Exposure to antibiotics affects saponin immersion-induced immune stimulation and shift in microbial composition in zebrafish larvae. Front Microbiol 9:2588. https://doi.org/10.3389/fmicb.2018.02588

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hooper LV, Gordon JI (2001) Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11:1R-10R. https://doi.org/10.1093/glycob/11.2.1R

    Article  CAS  PubMed  Google Scholar 

  46. Brandley BK, Schnaar RL (1986) Cell-surface carbohydrates in cell recognition and response. J Leukoc Biol 40:97–111. https://doi.org/10.1002/jlb.40.1.97

    Article  CAS  PubMed  Google Scholar 

  47. Fish KE, Collins R, Green NH et al (2015) Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system. PLoS ONE 10:e0115824. https://doi.org/10.1371/journal.pone.0115824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465. https://doi.org/10.1128/JB.186.14.4457-4465.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brumlow CE, Luna RA, Hollister EB et al (2019) Biochemical but not compositional recovery of skin mucosal microbiome communities after disruption. Infect Drug Resist 12:399–416. https://doi.org/10.2147/IDR.S185992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hansen M, Ingebrigtsen K, Hayton W, Horsberg T (2001) Disposition of 14C-flumequine in eel Anguilla anguilla, turbot Scophthalmus maximus and halibut Hippoglossus hippoglossus after oral and intravenous administration. Dis Aquat Organ 47:183–191. https://doi.org/10.3354/dao047183

    Article  CAS  PubMed  Google Scholar 

  51. Sohlberg S, Ingebrigtsen K, Hansen M et al (2002) Flumequine in Atlantic salmon Salmo salar: disposition in fish held in sea water versus fresh water. Dis Aquat Organ 49:39–44. https://doi.org/10.3354/dao049039

    Article  CAS  Google Scholar 

  52. Malvisi J, Della Rocca G, Anfossi P, Giorgetti G (1997) Tissue distribution and depletion of flumequine after in-feed administration in sea bream (Sparus aurata). Aquaculture 157:197–204. https://doi.org/10.1016/S0044-8486(97)00160-9

    Article  Google Scholar 

Download references

Funding

This work was funded by the European Regional Development Fund (ERDF) through the COMPETE program and by National Funds through FCT—Foundation for Science and Technology (project PTDC/BIA-MIC/27995/2017 POCI-01–0145-FEDER-027995); DR, MP-L, and RX were supported by FCT under the Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional funds from the European Social Fund and Portuguese Ministério da Educação e Ciência (DR doctoral grant SFRH/BD/117943/2016; MP-L: IF/00764/2013; RX: IF/00359/2015; and 2020.00854.CEECIND).

Author information

Authors and Affiliations

Authors

Contributions

DR, RX, and RS designed the research. RS collected the samples. DR performed laboratory work and analyzed the results. MP-L contributed to the statistical analysis. RX and MP-L supervised and provided intellectual content. All authors reviewed the manuscript. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Daniela Rosado or Raquel Xavier.

Ethics declarations

Ethics Approval

Animals in this study were reared in a commercial fish farm located in the estuarine environment of the Alvor Estuary (Portimão), southern Portugal. Fish were handled by the fish farm employees and samples were taken non-invasively. According to the Portuguese legislation DL Nº 113/2013, our work does not involve animal experimentation and therefore is exempted from the need of ethical approval.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosado, D., Pérez-Losada, M., Severino, R. et al. Monitoring Infection and Antibiotic Treatment in the Skin Microbiota of Farmed European Seabass (Dicentrarchus Labrax) Fingerlings. Microb Ecol 83, 789–797 (2022). https://doi.org/10.1007/s00248-021-01795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01795-8

Keywords

Navigation