Skip to main content
Log in

Fluctuation at High Temperature Combined with Nutrients Alters the Thermal Dependence of Phytoplankton

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The Metabolic Theory of Ecology (MTE) predicts that the temperature increases exert a common effect on organisms stimulating metabolic rates, this being stronger for a heterotrophic than for an autotrophic metabolism. However, no available studies within the MTE framework have focused on organisms’ response under fluctuation at high temperature interacting with factors such as nutrient availability, or how this interaction could affect the coexistence between mixotrophic and strict autotrophic phytoplankton. Hence, we assess how the phytoplankton metabolism and species composition are affected under scenarios of high temperature and fluctuation at high temperature, and how nutrients alter the direction and magnitude of such impact. For that, we use a mixed culture composed of two phytoplankton species: a strict autotrophic species and a mixotrophic species. Our results indicate that, in agreement with the MTE, only fluctuation at high temperature treatment registered a greater activation energy (Ea) value for respiration than for primary production and stimulated mixotrophic over strict autotrophic species abundance compared to control treatment. Remarkably, fluctuation at high temperature had a strong negative impact on the total abundance of the mixed-culture. The interaction between nutrient enrichment and fluctuation at high temperature increased abundance of the strict autotrophic species and overall species abundance, and led to Ea values that were higher in primary production than in respiration. Changes in community composition, enhanced by nutrient enrichment, could be behind this response, which can have implications in ecosystem functioning in a changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available from the corresponding author, Juan Manuel González-Olalla, upon request.

Code Availability

Not applicable.

References

  1. Sato M, Kodama T, Hashihama F, Ken F (2015) The effects of diel cycles and temperature on size distributions of pico- and nanophytoplankton in the subtropical and tropical Pacific Ocean. Plankt Benthos Res 10:26–33. https://doi.org/10.3800/pbr.10.26

    Article  Google Scholar 

  2. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596. https://doi.org/10.1038/nature09268

    Article  CAS  PubMed  Google Scholar 

  3. Chavez FP, Messié M, Pennington JT (2011) Marine primary production in relation to climate variability and change. Ann Rev Mar Sci 3:227–260. https://doi.org/10.1146/annurev.marine.010908.163917

    Article  PubMed  Google Scholar 

  4. Hillebrand H, Burgmer T, Biermann E (2012) Running to stand still: temperature effects on species richness, species turnover, and functional community dynamics. Mar Biol 159:2415–2422. https://doi.org/10.1007/s00227-011-1827-z

    Article  Google Scholar 

  5. Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50:291–300. https://doi.org/10.1111/j.1365-2427.2004.01317.x

    Article  Google Scholar 

  6. Cabrerizo MJ, Carrillo P, Villafañe VE, Walter Helbling E (2014) Current and predicted global change impacts of UVR, temperature and nutrient inputs on photosynthesis and respiration of key marine phytoplankton groups. J Exp Mar Bio Ecol 461:371–380. https://doi.org/10.1016/j.jembe.2014.08.022

    Article  CAS  Google Scholar 

  7. Striebel M, Schabhüttl S, Hodapp D et al (2016) Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition. Oecologia 182:815–827. https://doi.org/10.1007/s00442-016-3693-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. IPCC (2013) IPCC, 2013: Climate change 2013 the physical science basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  9. Zhang M, Qin B, Yu Y et al (2016) Effects of temperature fluctuation on the development of cyanobacterial dominance in spring: implication of future climate change. Hydrobiologia 763:135–146. https://doi.org/10.1007/s10750-015-2368-0

    Article  Google Scholar 

  10. Bindoff NL, Stott PA, AchutaRao KM et al (2013) Detection and attribution of climate change: from global to regional BT-climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, et al (eds). Cambridge University Press, Cambridge pp 867–952

  11. Brown JH, Gilooly JF, Allen AP et al (2004) Toward a metabolich theory of ecology. Ecology 85:1771–1789. https://doi.org/10.1890/03-9000

    Article  Google Scholar 

  12. Allen AP, Gillooly JF, Brown JH (2005) Linking the global carbon cycle to individual metabolism. Funct Ecol 19:202–213. https://doi.org/10.1111/j.1365-2435.2005.00952.x

    Article  Google Scholar 

  13. Sarmento H, Montoya JM, Vázquez-Domínguez E et al (2010) Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc B Biol Sci 365:2137–2149. https://doi.org/10.1098/rstb.2010.0045

    Article  Google Scholar 

  14. Gillooly JF, Charnov EL, West GB et al (2002) Effects of size and temperature on developmental time. Nature 417:70–73. https://doi.org/10.1038/417070a

    Article  CAS  PubMed  Google Scholar 

  15. Savage VM, Gillooly JF, Brown JH et al (2004) Effects of body size and temperature on population growth. Am Nat 163:429–441. https://doi.org/10.1086/381872

    Article  PubMed  Google Scholar 

  16. Padfield D, Lowe C, Buckling A et al (2017) Metabolic compensation constrains the temperature dependence of gross primary production. Ecol Lett 20:1250–1260. https://doi.org/10.1111/ele.12820

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anderson KJ, Allen AP, Gillooly JF, Brown JH (2006) Temperature-dependence of biomass accumulation rates during secondary succession. Ecol Lett 9:673–682. https://doi.org/10.1111/j.1461-0248.2006.00914.x

    Article  PubMed  Google Scholar 

  18. Yang Z, Zhang L, Zhu X et al (2016) An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics. ISME J 10:1767–1778. https://doi.org/10.1038/ismej.2015.225

    Article  PubMed  Google Scholar 

  19. Wilken S, Huisman J, Naus-Wiezer S, Van Donk E (2013) Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett 16:225–233. https://doi.org/10.1111/ele.12033

    Article  PubMed  Google Scholar 

  20. Flynn KJ, Mitra A, Anestis K et al (2019) Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now? J Plankton Res 1–17.https://doi.org/10.1093/plankt/fbz026

  21. González-Olalla JM, Medina-Sánchez JM, Carrillo P (2019) Mixotrophic trade-off under warming and UVR in a marine and a freshwater alga. J Phycol 55:1028–1040. https://doi.org/10.1111/jpy.12865

    Article  CAS  PubMed  Google Scholar 

  22. Cabrerizo MJ, González-Olalla JM, Hinojosa-López VJ et al (2019) A shifting balance: responses of mixotrophic marine algae to cooling and warming under UVR. New Phytol 221:1317–1327. https://doi.org/10.1111/nph.15470

    Article  CAS  PubMed  Google Scholar 

  23. González-Olalla JM, Medina-Sánchez JM, Lozano IL et al (2018) Climate-driven shifts in algal-bacterial interaction of high-mountain lakes in two years spanning a decade. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-28543-2

    Article  CAS  Google Scholar 

  24. Gast RJ, Fay SA, Sanders RW (2018) Mixotrophic activity and diversity of Antarctic marine protists in austral summer. Front Mar Sci 5:1–12. https://doi.org/10.3389/fmars.2018.00013

    Article  Google Scholar 

  25. Princiotta SDV, Sanders RW (2017) Heterotrophic and mixotrophic nanoflagellates in a mesotrophic lake: abundance and grazing impacts across season and depth. Limnol Oceanogr 62:632–644. https://doi.org/10.1002/lno.10450

    Article  Google Scholar 

  26. González-Olalla JM, Medina-Sánchez JM, Cabrerizo MJ et al (2017) Contrasting effect of Saharan dust and UVR on autotrophic picoplankton in nearshore versus offshore waters of Mediterranean Sea. J Geophys Res Biogeosci 122:2085–2103. https://doi.org/10.1002/2017JG003834

    Article  Google Scholar 

  27. Wang Z, Zhao J, Zhang Y, Cao Y (2009) Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea. J Environ Sci 21:1268–1275. https://doi.org/10.1016/S1001-0742(08)62414-6

    Article  CAS  Google Scholar 

  28. Sanders RW, Gast RJ (2012) Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters. FEMS Microbiol Ecol 82:242–253. https://doi.org/10.1111/j.1574-6941.2011.01253.x

    Article  CAS  PubMed  Google Scholar 

  29. Sanders RW, Berninger UG, Lim EL et al (2000) Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank. Mar Ecol Prog Ser 192:103–118. https://doi.org/10.3354/meps192103

    Article  Google Scholar 

  30. Callieri C, Bertoni R, Corno G (2003) Dynamics of bacteria and mixotrophic flagellates in an Alpine lake in relation to Daphnia population development. J Limnol 61:177–182. https://doi.org/10.4081/jlimnol.2002.177

    Article  Google Scholar 

  31. Saad JF, Schiaffino MR, Vinocur A et al (2013) Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. J Plankton Res 35:1220–1233. https://doi.org/10.1093/plankt/fbt075

    Article  CAS  Google Scholar 

  32. Jansson M, Blomqvist P, Jonsson A, BergstrÖm A (1996) Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnol Oceanogr 41:1552–1559. https://doi.org/10.4319/lo.1996.41.7.1552

    Article  CAS  Google Scholar 

  33. Naselli-Flores L, Barone R (2018) Mixotrophic phytoplankton dynamics in a shallow Mediterranean water body: how to make a virtue out of necessity. Hydrobiologia 831:33–41. https://doi.org/10.1007/s10750-018-3507-1

    Article  Google Scholar 

  34. Schlüter L, Henriksen P, Nielsen TG, Jakobsen HH (2011) Phytoplankton composition and biomass across the southern Indian Ocean. Deep Res Part I Oceanogr Res Pap 58:546–556. https://doi.org/10.1016/j.dsr.2011.02.007

    Article  CAS  Google Scholar 

  35. Ptacnik R, Gomes A, Royer SJ et al (2016) A light-induced shortcut in the planktonic microbial loop. Sci Rep 6:1–10. https://doi.org/10.1038/srep29286

    Article  Google Scholar 

  36. Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2004) Neither with nor without you: A complex algal control on bacterioplankton in a high mountain lake. Limnol Oceanogr 49:1722–1733. https://doi.org/10.4319/lo.2004.49.5.1722

    Article  Google Scholar 

  37. Ward BA, Follows MJ (2016) Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci 113:2958–2963. https://doi.org/10.1073/pnas.1517118113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  39. Chen IC, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science (80- ) 333:1024–1026. https://doi.org/10.1126/science.1206432

    Article  CAS  Google Scholar 

  40. Schaum CE, Buckling A, Smirnoff N et al (2018) Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun 9:1–14. https://doi.org/10.1038/s41467-018-03906-5

    Article  CAS  Google Scholar 

  41. Yamori W (2016) Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. J Plant Res 129:379–395. https://doi.org/10.1007/s10265-016-0816-1

    Article  CAS  PubMed  Google Scholar 

  42. Gerhard M, Koussoroplis AM, Hillebrand H, Striebel M (2019) Phytoplankton community responses to temperature fluctuations under different nutrient concentrations and stoichiometry. Ecology 100:e02834. https://doi.org/10.1002/ecy.2834

    Article  PubMed  Google Scholar 

  43. Rasconi S, Winter K, Kainz MJ (2017) Temperature increase and fluctuation induce phytoplankton biodiversity loss–evidence from a multi-seasonal mesocosm experiment. Ecol Evol 7:2936–2946. https://doi.org/10.1002/ece3.2889

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cabrerizo MJ, Marañón E (2021) Temperature fluctuations in a warmer environment: impacts on microbial plankton. Fac Rev 10:9. https://doi.org/10.12703/r/10-9

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang M, Guan Y, Qin B, Wang X (2019) Responses of phytoplankton species to diel temperature fluctuation patterns. Phycol Res 67:184–191. https://doi.org/10.1111/pre.12369

    Article  Google Scholar 

  46. Marshall DJ, McQuaid CD (2011) Warming reduces metabolic rate in marine snails: Adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proc R Soc B Biol Sci 278:281–288. https://doi.org/10.1098/rspb.2010.1414

    Article  Google Scholar 

  47. Cabrerizo MJ, Medina-Sánchez JM, González-Olalla JM et al (2016) Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems. Sci Rep 6:1–11. https://doi.org/10.1038/srep35892

    Article  CAS  Google Scholar 

  48. Cross WF, Hood JM, Benstead JP et al (2015) Interactions between temperature and nutrients across levels of ecological organization. Glob Chang Biol 21:1025–1040. https://doi.org/10.1111/gcb.12809

    Article  PubMed  Google Scholar 

  49. Allen AP, Gillooly JF (2009) Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol Lett 12:369–384. https://doi.org/10.1111/j.1461-0248.2009.01302.x

    Article  PubMed  Google Scholar 

  50. Marañón E, Lorenzo MP, Cermeño P, Mouriño-Carballido B (2018) Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J 12:1836–1845. https://doi.org/10.1038/s41396-018-0105-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calvo-Díaz A, Franco-Vidal L, Morán XAG (2014) Annual cycles of bacterioplankton biomass and production suggest a general switch between temperature and resource control in temperate coastal ecosystems. J Plankton Res 36:859–865. https://doi.org/10.1093/plankt/fbu022

    Article  CAS  Google Scholar 

  52. Marullo S, Minnett PJ, Santoleri R, Tonani M (2016) The diurnal cycle of sea-surface temperature and estimation of the heat budget of the Mediterranean Sea. J Geophys Res Ocean 121:8351–8367. https://doi.org/10.1002/2016JC012192

    Article  Google Scholar 

  53. Woolway RI, Jones ID, Maberly SC et al (2016) Diel surface temperature range scales with lake size. PLoS ONE 11:e0152466. https://doi.org/10.1371/journal.pone.0152466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hillebrand H, Dürselen C-D, Kirschtel D et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x

    Article  Google Scholar 

  55. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579. https://doi.org/10.4319/lo.2000.45.3.0569

    Article  CAS  Google Scholar 

  56. Nielsen ES (1952) The Use of Radio-active Carbon (C14) for measuring organic production in the sea. ICES J Mar Sci 18:117–140. https://doi.org/10.1093/icesjms/18.2.117

    Article  Google Scholar 

  57. Lignell R (1992) Problems in filtration fractionation of 14C primary productivity samples. Limnol Oceanogr 37:172–178. https://doi.org/10.4319/lo.1992.37.1.0172

    Article  CAS  Google Scholar 

  58. Beisner BE, Grossart HP, Gasol JM (2019) A guide to methods for estimating phago-mixotrophy in nanophytoplankton. J Plankton Res 41:77–89. https://doi.org/10.1093/plankt/fbz008

    Article  CAS  Google Scholar 

  59. Bell RT, Ahlgren GM, Ahlgren I (1983) Estimating bacterioplankton production by measuring [3H]thymidine incorporation in a eutrophic Swedish lake. Appl Environ Microbiol 45:1709–1721

    Article  CAS  Google Scholar 

  60. Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303. https://doi.org/10.1016/0198-0254(87)96080-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Medina-Sánchez JM, Herrera G, Durán C et al (2017) Optode use to evaluate microbial planktonic respiration in oligotrophic ecosystems as an indicator of environmental stress. Aquat Sci 79:529–541. https://doi.org/10.1007/s00027-016-0515-y

    Article  CAS  Google Scholar 

  62. del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541. https://doi.org/10.1146/annurev.ecolsys.29.1.503

    Article  Google Scholar 

  63. Cabrerizo MJ, Medina-Sánchez JM, Dorado-Garciá I et al (2017) Rising nutrient-pulse frequency and high UVR strengthen microbial interactions. Sci Rep 7:43615. https://doi.org/10.1038/srep43615

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yvon-Durocher G, Jones JI, Trimmer M et al (2010) Warming alters the metabolic balance of ecosystems. Philos Trans R Soc B Biol Sci 365:2117–2126. https://doi.org/10.1098/rstb.2010.0038

    Article  Google Scholar 

  65. Barton S, Jenkins J, Buckling A et al (2018) Universal metabolic constraints on the thermal tolerance of marine phytoplankton. bioRxiv 358002. https://doi.org/10.1101/358002

  66. Iwata T, Mochizuki N, Suzuki T et al (2016) Roles of terrestrial carbon subsidies to aquatic community metabolism in mountain lake ecosystems. In: Kudo G (ed) Structure and function of mountain ecosystems in Japan. Springer, Japan, pp 115–144

    Chapter  Google Scholar 

  67. Padfield D, Yvon-Durocher G, Buckling A et al (2016) Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol Lett 19:133–142. https://doi.org/10.1111/ele.12545

    Article  PubMed  Google Scholar 

  68. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol Lett 10:1170–1181. https://doi.org/10.1111/j.1461-0248.2007.01117.x

    Article  PubMed  Google Scholar 

  69. Reuman DC, Holt RD, Yvon-Durocher G (2014) A metabolic perspective on competition and body size reductions with warming. J Anim Ecol 83:59–69. https://doi.org/10.1111/1365-2656.12064

    Article  PubMed  Google Scholar 

  70. Vasseur DA, DeLong JP, Gilbert B et al (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B Biol Sci 281:20132612. https://doi.org/10.1098/rspb.2013.2612

    Article  Google Scholar 

  71. Cabrerizo MJ, Marañón E, Fernández-González C et al (2021) Temperature fluctuation attenuates the effects of warming in estuarine microbial plankton communities. Front Mar Sci 8:1–13. https://doi.org/10.3389/fmars.2021.656282

    Article  Google Scholar 

  72. Lürling M, Eshetu F, Faassen EJ et al (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559. https://doi.org/10.1111/j.1365-2427.2012.02866.x

    Article  Google Scholar 

  73. Shade A, Peter H, Allison SD et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417. https://doi.org/10.3389/fmicb.2012.00417

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pomati F, Shurin JB, Andersen KH et al (2020) Interacting temperature, nutrients and zooplankton grazing control phytoplankton size-abundance relationships in eight Swiss lakes. Front Microbiol 10:3155. https://doi.org/10.3389/fmicb.2019.03155

    Article  PubMed  PubMed Central  Google Scholar 

  75. Descamps-Julien B, Gonzalez A (2005) Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86:2815–2824. https://doi.org/10.1890/04-1700

    Article  Google Scholar 

  76. Duarte CM, Agustí S, Vaqué D (2004) Controls on planktonic metabolism in the Bay of Blanes, northwestern Mediterranean littoral. Limnol Oceanogr 49:2162–2170. https://doi.org/10.4319/lo.2004.49.6.2162

    Article  Google Scholar 

  77. Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: A review. J Soil Sci Plant Nutr 12:221–244. https://doi.org/10.4067/S0718-95162012000200003

    Article  Google Scholar 

  78. Edwards KF, Thomas MK, Klausmeier CA, Litchman E (2012) Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol Oceanogr 57:554–566. https://doi.org/10.4319/lo.2012.57.2.0554

    Article  Google Scholar 

  79. Yu C, Li C, Wang T et al (2018) Combined effects of experimental warming and eutrophication on phytoplankton dynamics and nitrogen uptake. Water (Switzerland) 10:1057. https://doi.org/10.3390/w10081057

    Article  CAS  Google Scholar 

  80. Birk S, Chapman D, Carvalho L et al (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat Ecol Evol 4:1060–1068. https://doi.org/10.1038/s41559-020-1216-4

    Article  PubMed  Google Scholar 

  81. Thingstad TF, Aksnes DL (2019) Why growth of nutrient-limited micro-organisms should have low-temperature sensitivity. ISME J 13:557–558. https://doi.org/10.1038/s41396-018-0271-1

    Article  PubMed  Google Scholar 

  82. Segura AM, Sarthou F, Kruk C (2018) Morphology-based differences in the thermal response of freshwater phytoplankton. Biol Lett 14:20170790. https://doi.org/10.1098/rsbl.2017.0790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Darío Ruiz Ruiz for his help in the laboratory analysis. We thank David Nesbitt and María Vila Duplá for English writing assistance.

Funding

This study was supported by Ministerio Economía y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) (CGL2015–67682-R to P.C. and J.M.M.-S.), and Ministerio de Ciencia e Innovación (PID2020-118872RB-I00 to P.C.). J.M.G.-O. was supported by the Spanish Government Fellowship “Formación de Profesorado Universitario” (FPU14/00977).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation, data curation, formal analysis, validation, visualisation and writing–original draft: Juan Manuel González-Olalla. Supervision and funding acquisition: Juan Manuel Medina-Sánchez and Presentación Carrillo. Writing–review and editing: Juan Manuel González-Olalla, Juan Manuel Medina-Sánchez and Presentación Carrillo.

Corresponding author

Correspondence to Juan Manuel Medina-Sánchez.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 793 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Olalla, J.M., Medina-Sánchez, J.M. & Carrillo, P. Fluctuation at High Temperature Combined with Nutrients Alters the Thermal Dependence of Phytoplankton. Microb Ecol 83, 555–567 (2022). https://doi.org/10.1007/s00248-021-01787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01787-8

Keywords

Navigation