Skip to main content

Advertisement

Log in

Invasive Acacia Tree Species Affect Instream Litter Decomposition Through Changes in Water Nitrogen Concentration and Litter Characteristics

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Non-native nitrogen-fixing Acacia species have been invading riparian ecosystems worldwide, potentially threatening stream communities that strongly depend on allochthonous litter. We examined the effects of the invasion of native deciduous temperate forests by Acacia species on litter decomposition and associated fungal decomposers in streams. Litter of native (Alnus glutinosa and Quercus robur) and invasive (Acacia melanoxylon) species were enclosed in fine-mesh bags and immersed in three native and three invaded streams, for 14–98 days. Litter decomposition rates, fungal biomass, and aquatic hyphomycete sporulation rates were higher in invaded than in native streams, likely due to the higher water nitrogen concentration found in invaded streams. Alnus glutinosa litter had higher aquatic hyphomycete sporulation rates and species richness, and higher decomposition rates, probably because they were soft and nitrogen rich. Quercus robur litter also had high aquatic hyphomycete sporulation rates but lower decomposition rates than Al. glutinosa, probably due to high polyphenol concentration and carbon:nitrogen ratio. Acacia melanoxylon litter had lower aquatic hyphomycete sporulation rates and species richness, and lower decomposition rates, most likely because it was very tough. Thus, litter decomposition rates varied in the order: Al. glutinosa > Q. robur > Ac. melanoxylon. The aquatic hyphomycete community structure strongly differed between native and invaded streams, and among litter species, suggesting that microbes were sensitive to water nitrogen concentration and litter characteristics. Overall, increases in water nitrogen concentration and alterations in litter characteristics promoted by the invasion of native riparian forests by Acacia species may affect the activity and community structure of microbial decomposers, and instream litter decomposition, thus altering the functioning of stream ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  2. Vilà M, Hulme P (2017) Impact of biological invasions on ecosystem services. Springer International Publishing, Switzerland

    Book  Google Scholar 

  3. Castro-Díez P, Vaz AS, Silva JS, van Loo M, Alonso Á, Aponte C, Bayón Á, Bellingham PJ, Chiuffo MC, DiManno N, Julian K, Kandert S, La Porta N, Marchante H, Maule HG, Mayfield MM, Metcalfe D, Monteverdi MC, Núñez MA, Ostertag R, Parker IM, Peltzer DA, Potgieter LJ, Raymundo M, Rayome D, Reisman-Berman O, Richardson DM, Roos RE, Saldaña A, Shackleton RT, Torres A, Trudgen M, Urban J, Vicente JR, Vilà M, Ylioja T, Zenni RD, Godoy O (2019) Global effects of non-native tree species on multiple ecosystem services. Biol Rev 94:1477–1501. https://doi.org/10.1111/brv.12511

    Article  PubMed  Google Scholar 

  4. Castro-Díez P, Alonso Á (2017) Effects of non-native riparian plants in riparian and fluvial ecosystems: a review for the Iberian Peninsula. Limnetica 36:525–541. https://doi.org/10.23818/limn.36.19

    Article  Google Scholar 

  5. Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67:101. https://doi.org/10.1051/forest/2009082

    Article  Google Scholar 

  6. Souza-Alonso P, Rodríguez J, González L, Lorenzo P (2017) Here to stay. Recent advances and perspectives about Acacia invasion in Mediterranean areas. Ann For Sci 74:55. https://doi.org/10.1007/s13595-017-0651-0

    Article  Google Scholar 

  7. Ferreira V, Castela J, Rosa P, Tonin AM, Boyero L, Graça MAS (2016) Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquat Ecol 50:711–725. https://doi.org/10.1007/s10452-016-9588-x

    Article  CAS  Google Scholar 

  8. Ferreira V, Figueiredo A, Graça MAS, Marchante E, Pereira A (2021) Invasion of temperate deciduous broadleaf forests by N-fixing tree species—consequences for stream ecosystems. Biol Rev. https://doi.org/10.1111/brv.12682

  9. Graça MAS, Pozo J, Canhoto C, Elosegi A (2002) Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams. ScientificWorldJournal 2:1173–1185. https://doi.org/10.1100/tsw.2002.193

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hladyz S, Åbjörnsson K, Giller PS, Woodward G (2011) Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J Appl Ecol 48:443–452. https://doi.org/10.1111/j.1365-2664.2010.01924.x

    Article  Google Scholar 

  11. Martínez A, Larrañaga A, Pérez J, Descals E, Basaguren A, Pozo J (2013) Effects of pine plantations on structural and functional attributes of forested streams. For Ecol Manage 310:147–155. https://doi.org/10.1016/j.foreco.2013.08.024

    Article  Google Scholar 

  12. Ferreira V, Koricheva J, Pozo J, Graça MAS (2016) A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. For Ecol Manage 364:27–38. https://doi.org/10.1016/j.foreco.2016.01.002

    Article  Google Scholar 

  13. Compton JE, Church MR, Larned ST, Hogsett WE (2003) Nitrogen export from forested watersheds in the Oregon Coast Range: the role of N2-fixing Red Alder. Ecosystems 6:773–785. https://doi.org/10.1007/s10021-002-0207-4

    Article  CAS  Google Scholar 

  14. Goldstein CL, Williard KWJ, Schoonover JE (2009) Impact of an invasive exotic species on stream nitrogen levels in Southern Illinois. J Am Water Resour Assoc 45:664–672. https://doi.org/10.1111/j.1752-1688.2009.00314.x

    Article  CAS  Google Scholar 

  15. Shaftel RS, King RS, Back JA (2012) Alder cover drives nitrogen availability in Kenai lowland headwater streams, Alaska. Biogeochemistry 107:135–148. https://doi.org/10.1007/s10533-010-9541-3

    Article  CAS  Google Scholar 

  16. Wiegner TN, Hughes F, Shizuma LM, Bishaw DK, Manuel ME (2013) Impacts of an invasive N2-fixing tree on Hawaiian stream water quality. Biotropica 45:409–418. https://doi.org/10.1111/btp.12024

    Article  Google Scholar 

  17. Singh G, Mejía NMM, Williard KWJ, Schoonover JE, Groninger JW (2019) Watershed vulnerability to invasive N2-fixing autumn olive and consequences for stream nitrogen concentrations. J Environ Qual 48:614–623. https://doi.org/10.2134/jeq2018.09.0343

    Article  CAS  PubMed  Google Scholar 

  18. Stewart SD, Young MB, Harding JS, Horton TW (2019) Invasive nitrogen-fixing plant amplifies terrestrial-aquatic nutrient flow and alters ecosystem function. Ecosystems 22:587–601. https://doi.org/10.1007/s10021-018-0289-2

    Article  CAS  Google Scholar 

  19. Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038. https://doi.org/10.1890/0012-9658(2002)083[1026:COSDFA]2.0.CO;2

    Article  Google Scholar 

  20. Baldy V, Gobert V, Guerold F, Chauvet E, Lambrigot D, Charcosset J-Y (2007) Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshw Biol 52:1322–1335. https://doi.org/10.1111/j.1365-2427.2007.01768.x

    Article  CAS  Google Scholar 

  21. Gulis V, Su R, Kuehn KA (2019) Fungal decomposers in freshwater environments. In: Hurst CJ (ed) The structure and function of aquatic microbial communities. Advances in Environmental Microbiology. Springer International Publishing, Switzerland, pp 121–155

    Chapter  Google Scholar 

  22. Ferreira V, Gulis V, Graça MAS (2006) Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729. https://doi.org/10.1007/s00442-006-0478-0

    Article  PubMed  Google Scholar 

  23. Ferreira V, Graça MAS (2016) Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi. Limnologica 58:69–77. https://doi.org/10.1016/j.limno.2016.03.002

    Article  CAS  Google Scholar 

  24. Rajashekhar M, Kaveriappa KM (2003) Diversity of aquatic hyphomycetes in the aquatic ecosystems of the Western Ghats of India. Hydrobiologia 501:167–177. https://doi.org/10.1023/A:1026239917232

    Article  Google Scholar 

  25. Lecerf A, Dobson M, Dang CK, Chauvet E (2005) Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia 146:432–442. https://doi.org/10.1007/s00442-005-0212-3

    Article  PubMed  Google Scholar 

  26. Laitung B, Chauvet E (2005) Vegetation diversity increases species richness of leaf-decaying fungal communities in woodland streams. Arch Hydrobiol 164:217–235. https://doi.org/10.1127/0003-9136/2005/0164-0217

    Article  Google Scholar 

  27. Canhoto C, Graça MAS (1996) Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333:79–85. https://doi.org/10.1007/BF00017570

    Article  CAS  Google Scholar 

  28. Gulis V (2001) Are there any substrate preferences in aquatic hyphomycetes? Mycol Res 105:1088–1093. https://doi.org/10.1016/S0953-7562(08)61971-1

    Article  Google Scholar 

  29. Bärlocher F, Graça MAS (2002) Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshw Biol 47:1123–1135. https://doi.org/10.1046/j.1365-2427.2002.00836.x

    Article  Google Scholar 

  30. Menéndez M, Descals E, Riera T, Moya O (2013) Do non-native Platanus hybrida riparian plantations affect leaf litter decomposition in streams? Hydrobiologia 716:5–20. https://doi.org/10.1007/s10750-013-1539-0

    Article  CAS  Google Scholar 

  31. Ferreira V, Faustino H, Raposeiro PM, Gonçalves V (2017) Replacement of native forests by conifer plantations affects fungal decomposer community structure but not litter decomposition in Atlantic island streams. For Ecol Manage 389:323–330. https://doi.org/10.1016/j.foreco.2017.01.004

    Article  Google Scholar 

  32. Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134. https://doi.org/10.1046/j.1365-2427.2003.00985.x

    Article  Google Scholar 

  33. Ferreira V, Castagneyrol B, Koricheva J, Gulis V, Chauvet E, Graça MAS (2015) A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biol Rev 90:669–688. https://doi.org/10.1111/brv.12125

    Article  PubMed  Google Scholar 

  34. Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça MAS, Fleituch T, Lacoursière JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB-M, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440. https://doi.org/10.1126/science.1219534

    Article  CAS  PubMed  Google Scholar 

  35. Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, Manning DWP, Suberkropp K, Wallace JB (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347:1142–1145. https://doi.org/10.1126/science.aaa1958

    Article  CAS  PubMed  Google Scholar 

  36. Pereira A, Trabulo J, Fernandes I, Pascoal C, Cássio F, Duarte S (2017) Spring stimulates leaf decomposition in moderately eutrophic streams. Aquat Sci 79:197–207. https://doi.org/10.1007/s00027-016-0490-3

    Article  Google Scholar 

  37. Pereira A, Ferreira V (2021) Invasion of native riparian forests by Acacia species affects in-stream litter decomposition and associated microbial decomposers. Microb Ecol 81:14–25. https://doi.org/10.1007/s00248-020-01552-3

    Article  CAS  PubMed  Google Scholar 

  38. Lowe SR, Woodford DJ, Impson DN, Day JA (2008) The impact of invasive fish and invasive riparian plants on the invertebrate fauna of the Rondegat River, Cape Floristic Region, South Africa. African J Aquat Sci 33:51–62. https://doi.org/10.2989/AJAS.2007.33.1.6.390

    Article  Google Scholar 

  39. Railoun MZ (2018) Impacts of the invasive tree Acacia mearnsii on riparian and instream aquatic environments in the Cape Floristic Region, South Africa. Dissertation, Stellenbosch University

  40. Graça MAS, Poquet JM (2014) Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021–1032. https://doi.org/10.1007/s00442-013-2825-2

    Article  PubMed  Google Scholar 

  41. Ferreira V, Raposeiro PM, Pereira A, Cruz AM, Costa AC, Graça MAS, Gonçalves V (2016) Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshw Biol 61:783–799. https://doi.org/10.1111/fwb.12749

    Article  CAS  Google Scholar 

  42. Bärlocher F, Gessner MO, Graça MAS (2020) Methods to study litter decomposition. A practical guide. Springer, Dordrecht

    Book  Google Scholar 

  43. Goering HK, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agricultural Research Service, Washington DC

    Google Scholar 

  44. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    Article  CAS  Google Scholar 

  45. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  46. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  47. Gulis V, Ferreira V, Graça MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–1669. https://doi.org/10.1111/j.1365-2427.2006.01615.x

    Article  CAS  Google Scholar 

  48. Huryn AD, Butz Huryn VM, Arbuckle CJ, Tsomides L (2002) Catchment land-use, macroinvertebrates and detritus processing in headwater streams: taxonomic richness versus function. Freshw Biol 47:401–415. https://doi.org/10.1046/j.1365-2427.2002.00812.x

    Article  Google Scholar 

  49. Fernandes I, Seena S, Pascoal C, Cássio F (2014) Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshw Biol 59:2390–2399. https://doi.org/10.1111/fwb.12445

    Article  CAS  Google Scholar 

  50. Atwood TB, Wiegner TN, Turner P, MacKenzie RA (2010) Potential effects of an invasive nitrogen-fixing tree on a Hawaiian stream food web. Pacific Sci 64:367–379. https://doi.org/10.2984/64.3.367

    Article  CAS  Google Scholar 

  51. Mineau MM, Baxter CV, Marcarelli AM (2011) A non-native riparian tree (Elaeagnus angustifolia) changes nutrient dynamics in streams. Ecosystems 14:353–365. https://doi.org/10.1007/s10021-011-9415-0

    Article  CAS  Google Scholar 

  52. Ferreira V, Chauvet E (2011) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Chang Biol 17:551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x

    Article  Google Scholar 

  53. Manning DWP, Rosemond AD, Gulis V, Benstead JP, Kominoski JS (2018) Nutrients and temperature additively increase stream microbial respiration. Glob Chang Biol 24:e233–e247. https://doi.org/10.1111/gcb.13906

    Article  PubMed  Google Scholar 

  54. Ferreira V, Chauvet E, Canhoto C (2015) Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Can J Fish Aquat Sci 72:206–216. https://doi.org/10.1139/cjfas-2014-0119

    Article  CAS  Google Scholar 

  55. Ferreira V, Canhoto C (2015) Future increase in temperature may stimulate litter decomposition in temperate mountain streams: evidence from a stream manipulation experiment. Freshw Biol 60:881–892. https://doi.org/10.1111/fwb.12539

    Article  Google Scholar 

  56. Bärlocher F, Stewart M, Ryder D (2012) Processing of Eucalyptus viminalis leaves in Australian streams—importance of aquatic hyphomycetes and zoosporic fungi. Fundam Appl Limnol 179:305–319. https://doi.org/10.1127/1863-9135/2012/0229

    Article  Google Scholar 

  57. Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102. https://doi.org/10.2307/3545678

    Article  Google Scholar 

  58. Marks JC (2019) Revisiting the fates of dead leaves that fall into streams. Annu Rev Ecol Evol Syst 50:547–568. https://doi.org/10.1146/annurev-ecolsys-110218-024755

    Article  Google Scholar 

  59. Wang F, Lin D, Li W, Dou P, Han L, Huang M, Qian S, Yao J (2020) Meiofauna promotes litter decomposition in stream ecosystems depending on leaf species. Ecol Evol 10:9257–9270. https://doi.org/10.1002/ece3.6610

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817. https://doi.org/10.2307/1939639

    Article  Google Scholar 

  61. Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605. https://doi.org/10.1016/j.baae.2007.11.003

    Article  Google Scholar 

  62. Fernandes I, Pascoal C, Guimarães H, Pinto R, Sousa I, Cássio F (2012) Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshw Biol 57:2306–2317. https://doi.org/10.1111/fwb.12004

    Article  Google Scholar 

  63. Zhang M, Cheng X, Geng Q, Shi Z, Luo Y, Xu X (2019) Leaf litter traits predominantly control litter decomposition in streams worldwide. Glob Ecol Biogeogr 28:1469–1486. https://doi.org/10.1111/geb.12966

    Article  Google Scholar 

  64. Li AOY, Ng LCY, Dudgeon D (2009) Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream. Aquat Sci 71:80–93. https://doi.org/10.1007/s00027-008-8117-y

    Article  CAS  Google Scholar 

  65. Ferreira V, Encalada AC, Graça MAS (2012) Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw Sci 31:945–962. https://doi.org/10.1899/11-062.1

    Article  Google Scholar 

  66. Pereira A, Geraldes P, Lima-Fernandes E, Fernandes I, Cássio F, Pascoal C (2016) Structural and functional measures of leaf-associated invertebrates and fungi as predictors of stream eutrophication. Ecol Indic 69:648–656. https://doi.org/10.1016/j.ecolind.2016.05.017

    Article  CAS  Google Scholar 

  67. Campbell IANC, James KIMR, Hart BT, Devereaux A (1992) Allochthonous coarse particulate organic material in forest and pasture reaches of two south-eastern Australian streams. Freshw Biol 27:353–365. https://doi.org/10.1111/j.1365-2427.1992.tb00545.x

    Article  Google Scholar 

  68. Raposeiro PM, Martins GM, Moniz I, Cunha A, Costa AC, Gonçalves V (2014) Leaf litter decomposition in remote oceanic islands: the role of macroinvertebrates vs. microbial decomposition of native vs. exotic plant species. Limnologica 45:80–87. https://doi.org/10.1016/j.limno.2013.10.006

    Article  Google Scholar 

  69. Raposeiro PM, Ferreira V, Gea G, Gonçalves V (2018) Contribution of aquatic shredders to leaf litter decomposition in Atlantic island streams depends on shredder density and litter quality. Mar Freshw Res 69:1432–1439. https://doi.org/10.1071/MF18020

    Article  Google Scholar 

  70. Graça MAS, Cressa C (2010) Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Int Rev Hydrobiol 95:27–41. https://doi.org/10.1002/iroh.200911173

    Article  Google Scholar 

  71. Ferreira V, Elosegi A, Gulis V, Pozo J, Graça MAS (2006) Eucalyptus plantations affect fungal communities associated with leaf-litter decomposition in Iberian streams. Arch Hydrobiol 166:467–490. https://doi.org/10.1127/0003-9136/2006/0166-0467

    Article  CAS  Google Scholar 

  72. Arroita M, Aristi I, Flores L, Larrañaga A, Díez J, Mora J, Romaní AM, Elosegi A (2012) The use of wooden sticks to assess stream ecosystem functioning: comparison with leaf breakdown rates. Sci Total Environ 440:115–122. https://doi.org/10.1016/j.scitotenv.2012.07.090

    Article  CAS  PubMed  Google Scholar 

  73. Yeung ACY, Kreutzweiser DP, Richardson JS (2019) Stronger effects of litter origin on the processing of conifer than broadleaf leaves: a test of home-field advantage of stream litter breakdown. Freshw Biol 64:1755–1768. https://doi.org/10.1111/fwb.13367

    Article  Google Scholar 

  74. Artigas J, Romaní AM, Sabater S (2008) Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquat Bot 88:32–38. https://doi.org/10.1016/j.aquabot.2007.08.005

    Article  CAS  Google Scholar 

  75. Geraldes P (2011) Fungal communities and functional measures as indicators of stream ecosystem health. Dissertation, Minho University

  76. Noel L, Bärlocher F, Culp JM, Seena S (2016) Nutrient enrichment and flow regulation impair structure and function of a large river as revealed by aquatic hyphomycete species richness, biomass, and decomposition rates. Freshw Sci 35:1148–1163. https://doi.org/10.1086/689180

    Article  Google Scholar 

  77. Arsuffi TL, Suberkropp K (1984) Leaf processing capabilities of aquatic hyphomycetes—interspecific differences and influence on shredder feeding preferences. Oikos 42:144–154. https://doi.org/10.2307/3544786

    Article  Google Scholar 

  78. Arsuffi TL, Suberkropp K (1988) Effects of fungal mycelia and enzymatically degraded leaves on feeding and performance of caddisfly (Trichoptera) larvae. J North Am Benthol Soc 7:205–211. https://doi.org/10.2307/1467420

    Article  Google Scholar 

  79. Brosed M, Jabiol J, Gessner MO (2017) Nutrient stoichiometry of aquatic hyphomycetes: interstrain variation and ergosterol conversion factors. Fungal Ecol 29:96–102. https://doi.org/10.1016/j.funeco.2017.04.008

    Article  Google Scholar 

  80. Kominoski JS, Shah JJF, Canhoto C, Fischer DG, Giling DP, González E, Griffiths NA, Larrañaga A, LeRoy CJ, Mineau MM, McElarney YR, Shirley SM, Swan CM, Tiegs SD (2013) Forecasting functional implications of global changes in riparian plant communities. Front Ecol Environ 11:423–432. https://doi.org/10.1890/120056

    Article  Google Scholar 

  81. Figueiredo A (2016) The contribution of network driving factors to explain invasion patterns: the role of water on Madeira Island. Water Territories, 2nd International Congress of CEGOT, 7-9 March, Faculdade De Letras Da Universidade De Coimbra, Coimbra, Portugal: 109-118

Download references

Acknowledgements

We thank Olímpia Sobral (CFE, University of Coimbra) for all the help in the field and the laboratory, and Teresa Gonçalves and Chantal Fernandes (CNC, University of Coimbra) for the use of the lyophilizer. Water nutrient analyses were ordered to Centro de Apoio Científico-Tecnolóxico á Investigación (CACTI, University of Vigo, Spain). Ergosterol analyses were ordered to Instituto do Ambiente Tecnologia e Vida (IATV, University of Coimbra, Portugal).

Availability of Data and Materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Funding

This study was financed by the Portuguese Foundation for Science and Technology (FCT) through the exploratory project IF/00129/2014 granted to Verónica Ferreira and through the strategic project UIDP/04292/2020 granted to MARE. Ana Pereira received a doctoral fellowship from FCT (SFRH/BD/118069/2016), financed by the European Social Fund (FSE) from the European Union (UE), through the Programa Operacional Regional Centro (CENTRO 2020) and by National Funds from the Orçamento de Estado, through Ministério da Ciência, Tecnologia e Ensino Superior (MCTES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Pereira.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A., Figueiredo, A. & Ferreira, V. Invasive Acacia Tree Species Affect Instream Litter Decomposition Through Changes in Water Nitrogen Concentration and Litter Characteristics. Microb Ecol 82, 257–273 (2021). https://doi.org/10.1007/s00248-021-01749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01749-0

Keywords

Navigation