Skip to main content

Advertisement

Log in

Effects of Land-Use Type and Flooding on the Soil Microbial Community and Functional Genes in Reservoir Riparian Zones

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ecological processes (e.g., nutrient cycling) in riparian zones are often affected by land-use type and flooding. The extent to which land-use types and flooding conditions affect soil microorganisms and their ecological functions in riparian zones is not well known. By using high-throughput sequencing and quantitative PCR (q-PCR), we tested the effects of three land-use types (i.e., forest, wetland, and grassland) and two flooding conditions (i.e., landward locations and waterward locations within the land-use types) on soil microbial communities and microbial functional genes in the riparian zones of a reservoir. Land-use type but not flooding significantly affected soil microbial community composition at the phylum level, while both land-use type and flooding significantly affected the orders Nitrosotaleales and Nitrososphaerales. Alpha diversity was higher in the wetland and forest regardless of flooding conditions. Functional gene abundance differed among the three land-use types. Archaeal amoA (AOA) and nirS genes were more abundant in the wetland than in the grassland or forest. Bacterial amoA (AOB), nirK, nirS, and nosZ genes were more abundant in the waterward location than in the landward location but only in the wetland. Soil pH, moisture, and concentrations of soil organic matter and total soil nitrogen were significantly associated with the composition of archaeal and bacterial communities as well as with their gene abundance. This study revealed that soil microorganisms putatively involved in nitrogen cycling in riparian zones were more affected by land-use type than flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Castello L, Macedo MN (2016) Large-scale degradation of Amazonian freshwater ecosystems. Glob Chang Biol 22(3):990–1007. https://doi.org/10.1111/gcb.13173

    Article  PubMed  Google Scholar 

  2. Moon JB, Wardrop DH, Bruns MAV, Miller RM, Naithani KJ (2016) Land-use and land-cover effects on soil microbial community abundance and composition in headwater riparian wetlands. Soil Biol Biochem. 97:215–233. https://doi.org/10.1016/j.soilbio.2016.02.021

    Article  CAS  Google Scholar 

  3. Kuglerova L, Kielstra BW, Moore RD, Richardson JS (2019) Importance of scale, land-use, and stream network properties for riparian plant communities along an urban gradient. Freshw Biol. 64(3):587–600. https://doi.org/10.1111/fwb.13244

    Article  Google Scholar 

  4. Ye C, Cheng X, Zhang K, Du M, Zhang Q (2017) Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone. Soil Biol Biochem. 115:137–147. https://doi.org/10.1016/j.soilbio.2017.08.018

    Article  CAS  Google Scholar 

  5. Pinay G, Black VJ, Planty-Tabacchi AM, Gumiero B, Decamps H (2000) Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50(2):163–182. https://doi.org/10.1023/a:1006317004639

    Article  Google Scholar 

  6. Hefting M, Clement JC, Dowrick D, Cosandey AC, Bernal S, Cimpian C, Tatur A, Burt TP, Pinay G (2004) Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67(1):113–134. https://doi.org/10.1023/b:biog.0000015320.69868.33

    Article  CAS  Google Scholar 

  7. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6(4):301–312. https://doi.org/10.1007/s10021-003-0161-9

    Article  CAS  Google Scholar 

  8. Bernhardt ES, Blaszczak JR, Ficken CD, Fork ML, Kaiser KE, Seybold EC (2017) Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20(4):665–682. https://doi.org/10.1007/s10021-016-0103-y

    Article  Google Scholar 

  9. Gong X, Dong J, Tian W (2013) A review of impacts of agricultural non-point source pollution on microbial Community in Riparian Zone. In: Xu QJ, Ju YH, Ge HH (eds) Progress in environmental science and engineering, pts 1-4, vol 610-613. Advanced materials research. Pp 1975−+. https://doi.org/10.4028/www.scientific.net/AMR.610-613.1975

  10. Ye C, Chen C, Du M, Liu W, Zhang Q (2017) Revegetation affects soil denitrifying communities in a riparian ecotone. Ecol. Eng. 103:256–263. https://doi.org/10.1016/j.ecoleng.2017.03.005

    Article  Google Scholar 

  11. Peralta AL, Johnston ER, Matthews JW, Kent AD (2016) Abiotic correlates of microbial community structure and nitrogen cycling functions vary within wetlands. Freshwater Sci 35(2):573–588. https://doi.org/10.1086/685688

    Article  Google Scholar 

  12. Yang F, Zhang D, Wu J, Chen Q, Long C, Li Y, Cheng X (2019) Anti-seasonal submergence dominates the structure and composition of prokaryotic communities in the riparian zone of the three gorges reservoir, China. Sci Total Environ. 663:662–672. https://doi.org/10.1016/j.scitotenv.2019.01.357

    Article  CAS  PubMed  Google Scholar 

  13. Peralta AL, Matthews JW, Kent AD (2014) Habitat specialization along a wetland moisture gradient differs between Ammonia-oxidizing and denitrifying microorganisms. Microb Ecol. 68(2):339–350. https://doi.org/10.1007/s00248-014-0407-4

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Gang D, Zhao S, Qi W, Liu H (2021) Response of ammonia oxidation activities to water-level fluctuations in riparian zones in a column experiment. Chemosphere 269:128702–128702. https://doi.org/10.1016/j.chemosphere.2020.128702

    Article  CAS  PubMed  Google Scholar 

  15. Ye C, Butler OM, Chen C, Liu W, Du M, Q F (2020) Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of Three Gorges Reservoir, China. Geoderma 361. https://doi.org/10.1016/j.geoderma.2019.114015

  16. Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil M-C, Gessler A, Galiano L, Carlos Miranda J, Spor A, Barnard RL (2018) Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 12(4):1061–1071. https://doi.org/10.1038/s41396-018-0079-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sekaran U, Kumar S, Gonzalez-Hernandez JL (2021) Integration of crop and livestock enhanced soil biochemical properties and microbial community structure. Geoderma 381. https://doi.org/10.1016/j.geoderma.2020.114686

  18. Wang L, Yan B, Prasher SO, Ou Y, Bian Y, Cui H (2019) The response of microbial composition and enzyme activities to hydrological gradients in a riparian wetland. J. Soils Sediments 19(12):4031–4041. https://doi.org/10.1007/s11368-019-02373-9

    Article  CAS  Google Scholar 

  19. Liu S, Ren H, Shen L, Lou L, Tan G, Zheng P, Hu B (2015) pH levels drive bacterial community structure in sediments of the Qiantang River as determined by 454 pyrosequencing. Frontiers in microbiology 6. https://doi.org/10.3389/fmicb.2015.00285

  20. Ma L, Xiong Z, Yao L, Liu G, Zhang Q, Liu W (2020) Soil properties alter plant and microbial communities to modulate denitrification rates in subtropical riparian wetlands. Land Degrad. Dev. https://doi.org/10.1002/ldr.3569

  21. Ye C, Li S, Yang Y, Shu X, Zhang J, Zhang Q (2015) Advancing analysis of Spatio-temporal variations of soil nutrients in the water level fluctuation zone of China's three gorges reservoir using self-organizing map. PLoS One 10(3). https://doi.org/10.1371/journal.pone.0121210

  22. Conthe M, Wittorf L, Kuenen JG, Kleerebezem R, van Loosdrecht MCM, Hallin S (2018) Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. ISME J. 12(4):1142–1153. https://doi.org/10.1038/s41396-018-0063-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shaaban M, Wu Y, Khalid MS, Peng Q-a XX, Wu L, Younas A, Bashir S, Mo Y, Lin S, Zafar-ul-Hye M, Abid M, Hu R (2018) Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes. Environ. Pollut. 235:625–631. https://doi.org/10.1016/j.envpol.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  24. Bissett A, Abell GCJ, Brown M, Thrall PH, Bodrossy L, Smith MC, Baker GH, Richardsson AE (2014) Land-use and management practices affect soil ammonia oxidiser community structure, activity and connectedness. Soil Biol. Biochem. 78:138–148. https://doi.org/10.1016/j.soilbio.2014.07.020

    Article  CAS  Google Scholar 

  25. Deng Q, Cheng X, Hui D, Zhang Q, Li M, Zhang Q (2016) Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in Central China. Sci. Total Environ. 541:230–237. https://doi.org/10.1016/j.scitotenv.2015.09.080

    Article  CAS  PubMed  Google Scholar 

  26. Kumar CM, Ghoshal N (2017) Impact of land-use change on soil microbial community composition and organic carbon content in the dry tropics. Pedosphere 27(5):974–977. https://doi.org/10.1016/s1002-0160(17)60404-1

    Article  CAS  Google Scholar 

  27. Zhang X, Gu Q, Long X, Li Z, Liu D, Ye D, He C, Liu X, Vaananen K, Chen X (2016) Anthropogenic activities drive the microbial community and its function in urban river sediment. J. Soils Sediments 16(2):716–725. https://doi.org/10.1007/s11368-015-1246-8

    Article  CAS  Google Scholar 

  28. Zhang Y, Dong S, Gao Q, Liu S, Zhou H, Ganjurjav H, Wang X (2016) Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan plateau. Sci Total Environ. 562:353–363. https://doi.org/10.1016/j.scitotenv.2016.03.221

    Article  CAS  PubMed  Google Scholar 

  29. Xiong Z, Li S, Yao L, Liu G, Zhang Q, Liu W (2015) Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands. Ecol Eng. 83:437–443. https://doi.org/10.1016/j.ecoleng.2015.04.094

    Article  Google Scholar 

  30. Edwards KR, Picek T, Cizkova H, Zemanova KM, Stara A (2015) Nutrient addition effects on carbon fluxes in wet grasslands with either organic or mineral soil. Wetlands 35(1):55–68. https://doi.org/10.1007/s13157-014-0592-4

    Article  Google Scholar 

  31. Drenovsky RE, Steenwerth KL, Jackson LE, Scow KM (2010) Land use and climatic factors structure regional patterns in soil microbial communities. Glob Ecol Biogeogr 19(1):27–39. https://doi.org/10.1111/j.1466-8238.2009.00486.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray A (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literature. Glob Chang Biol. 8(2):105–123. https://doi.org/10.1046/j.1354-1013.2001.00459.x

    Article  Google Scholar 

  33. Guo X, Chen H, Meng M, Biswas SR, Ye L, Zhang J (2016) Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. For Ecol Manag 373:93–99. https://doi.org/10.1016/j.foreco.2016.03.048

    Article  Google Scholar 

  34. Liu W, Yao L, Jiang X, Guo LD, Cheng X, Liu G (2018) Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities. Sci Total Environ 616:978–987. https://doi.org/10.1016/j.scitotenv.2017.10.221

    Article  CAS  PubMed  Google Scholar 

  35. Xiong Z, Guo L, Zhang Q, Liu G, Liu W (2017) Edaphic conditions regulate denitrification directly and indirectly by altering denitrifier abundance in wetlands along the Han River, China. Environ Sci Technol 51(10):5483–5491. https://doi.org/10.1021/acs.est.6b06521

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Wang W, Zhao S, Wang X, Hefting MM, Schwark L, Zhu G (2019) Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones. Water Res. 162:139–150. https://doi.org/10.1016/j.watres.2019.06.052

    Article  CAS  PubMed  Google Scholar 

  37. Wessen E, Soderstrom M, Stenberg M, Bru D, Hellman M, Welsh A, Thomsen F, Klemedtson L, Philippot L, Hallin S (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J. 5(7):1213–1225. https://doi.org/10.1038/ismej.2010.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim H, Bae H-S, Reddy KR, Ogram A (2016) Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Res. 106:51–61. https://doi.org/10.1016/j.watres.2016.09.048

    Article  CAS  PubMed  Google Scholar 

  39. Hinckley BR, Etheridge JR, Peralta AL (2020) Wetland conditions differentially influence nitrogen processing within waterfowl impoundments. Wetlands 40(5):1117–1131. https://doi.org/10.1007/s13157-019-01246-8

    Article  Google Scholar 

  40. Ding L, Li Q, Tang J, Wang J, Chen X (2019) Linking land use metrics measured in aquatic-terrestrial interfaces to water quality of reservoir-based water sources in eastern China. Sustainability 11(18). https://doi.org/10.3390/su11184860

  41. Morales SE, Cosart T, Holben WE (2010) Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME J. 4(6):799–808. https://doi.org/10.1038/ismej.2010.8

    Article  CAS  PubMed  Google Scholar 

  42. You J, Das A, Dolan EM, Hu Z (2009) Ammonia-oxidizing archaea involved in nitrogen removal. Water Res. 43(7):1801–1809. https://doi.org/10.1016/j.watres.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  43. Ye F, Ma M-H, Op den Camp HJM, Chatzinotas A, Li L, Lv M-Q, Wu S-J, Wang Y (2018) Different recovery processes of soil Ammonia oxidizers from flooding disturbance. Microb. Ecol. 76(4):1041–1052. https://doi.org/10.1007/s00248-018-1183-3

    Article  CAS  PubMed  Google Scholar 

  44. DeLong E, Hallam S, Mincer T, Schleper C, Preston C, Roberts K, Richardson P (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota (vol 4, art. No. e95, 2006). PLoS Biol. 4(12):2412–2412. https://doi.org/10.1371/journal.pbio.0040437

    Article  CAS  Google Scholar 

  45. Liao X, Chen C, Zhang J, Dai Y, Zhang X, Xie S (2015) Operational performance, biomass and microbial community structure: impacts of backwashing on drinking water biofilter. Environ Sci Pollut Res 22(1):546–554. https://doi.org/10.1007/s11356-014-3393-7

    Article  CAS  Google Scholar 

  46. Mao Y, Yannarell AC, Mackie RI (2011) Changes in N-transforming archaea and Bacteria in soil during the establishment of bioenergy crops. PLoS One 6(9). https://doi.org/10.1371/journal.pone.0024750

  47. Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6(5):1058–1077. https://doi.org/10.1038/ismej.2011.172

    Article  CAS  PubMed  Google Scholar 

  48. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6(8):1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, Rodriguez-Hilario A, Gonzalez H, Bondy J, Lawson F, Folawiyo O, Michailidi C, Dziedzic A, Thangavel R, Hadar T, Noordhuis MG, Westra W, Koch W, Sidransky D (2016) 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 7(32):51320–51334. https://doi.org/10.18632/oncotarget.9710

    Article  PubMed  PubMed Central  Google Scholar 

  50. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12(6). https://doi.org/10.1186/gb-2011-12-6-r60

  51. Lu R (1999) Analytical methods of agricultural chemistry in soil. China Agricultural Scientech Press, Beijing

    Google Scholar 

  52. Rayment GE, Higginson, F.R. (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne

  53. Core TR (2016) R: a language and environment for statistical computing. R Found Stat Comput, Vienna

    Google Scholar 

  54. Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621

    Article  Google Scholar 

  55. Bissett A, Brown MV, Siciliano SD, Thrall PH (2013) Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecol Lett 16:128–139. https://doi.org/10.1111/ele.12109

    Article  PubMed  Google Scholar 

  56. Sui X, Zhang R, Frey B, Yang L, Li M-H, Ni H (2019) Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang plain, northeastern China. Sci Rep 9. https://doi.org/10.1038/s41598-019-55063-4

  57. Lucker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damste JSS, Spieck E, Le Paslier D, Daims H (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci U S A 107(30):13479–13484. https://doi.org/10.1073/pnas.1003860107

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stieglmeier M, Klingl A, Alves RJE, Rittmann SKMR, Melcher M, Leisch N, Schleper C (2014) Nitrososphaera viennensis gen. Nov., sp nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 64:2738–2752. https://doi.org/10.1099/ijs.0.063172-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, Macqueen DJ (2015) Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proc Natl Acad Sci USA 112(30):9370–9375. https://doi.org/10.1073/pnas.1419329112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ishii S, Song Y, Rathnayake L, Tumendelger A, Satoh H, Toyoda S, Yoshida N, Okabe S (2014) Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environ Microbiol 16(10):3168–3180. https://doi.org/10.1111/1462-2920.12458

    Article  CAS  PubMed  Google Scholar 

  61. Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C, Power S, Reich PB, Scheu S, Tilman D, Ai F, Guo H, Ji R, Pierce S, Ramirez NG, Richter AN, Steinauer K, Strecker T, Vogel A, Eisenhauer N (2015) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob Chang Biol 21(11):4076–4085. https://doi.org/10.1111/gcb.13011

    Article  PubMed  Google Scholar 

  62. Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44(1):9–20. https://doi.org/10.1016/j.soilbio.2011.09.003

    Article  CAS  Google Scholar 

  63. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103(3):626–631. https://doi.org/10.1073/pnas.0507535103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150(4):590–601. https://doi.org/10.1007/s00442-006-0562-5

    Article  PubMed  Google Scholar 

  65. Chen Y, Ma S, Jiang H, Hu Y, Lu X (2020) Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species Geoderma 377. https://doi.org/10.1016/j.geoderma.2020.114577

  66. Lagomarsino A, Grego S, Kandeler E (2012) Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions. Pedobiologia 55(2):101–110. https://doi.org/10.1016/j.pedobi.2011.12.002

    Article  CAS  Google Scholar 

  67. Bowen H, Maul JE, Cavigelli MA, Yarwood S (2020) Denitrifier abundance and community composition linked to denitrification activity in an agricultural and wetland soil. Appl Soil Ecol 151. https://doi.org/10.1016/j.apsoil.2020.103521

  68. Brenzinger K, Doersch P, Braker G (2015) pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Frontiers in microbiology 6. https://doi.org/10.3389/fmicb.2015.00961

  69. Smith JM, Ogram A (2008) Genetic and functional variation in denitrifier populations along a short-term restoration chronosequence. Appl. Environ. Microbiol. 74(18):5615–5620. https://doi.org/10.1128/aem.00349-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809. https://doi.org/10.1038/nature04983

    Article  CAS  PubMed  Google Scholar 

  71. Isobe K, Koba K, Suwa Y, Ikutani J, Fang Y, Yoh M, Mo J, Otsuka S, Senoo K (2012) High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition. FEMS Microbiol. Ecol. 80(1):193–203. https://doi.org/10.1111/j.1574-6941.2011.01294.x

    Article  CAS  PubMed  Google Scholar 

  72. Zhang L, Hu H, Shen J, He J (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6(5):1032–1045. https://doi.org/10.1038/ismej.2011.168

    Article  CAS  PubMed  Google Scholar 

  73. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65(5):1815–1825

    Article  CAS  Google Scholar 

  74. Wang X, Wang C, Bao L, Xie S (2015) Impact of carbon source amendment on ammonia-oxidizing microorganisms in reservoir riparian soil. Ann Microbiol. 65(3):1411–1418. https://doi.org/10.1007/s13213-014-0979-8

    Article  CAS  Google Scholar 

  75. Ke X, Lu Y (2012) Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol. Ecol. 80(1):87–97. https://doi.org/10.1111/j.1574-6941.2011.01271.x

    Article  CAS  PubMed  Google Scholar 

  76. Xie Z, Le Roux X, Wang C, Gu Z, An M, Nan H, Chen B, Li F, Liu Y, Du G, Feng H, Ma X (2014) Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biol Biochem 77:89–99. https://doi.org/10.1016/j.soilbio.2014.06.024

    Article  CAS  Google Scholar 

  77. Di H, Cameron KC, Shen J-P, Winefield CS, O'Callaghan M, Bowatte S, He J (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72(3):386–394. https://doi.org/10.1111/j.1574-6941.2010.00861.x

    Article  CAS  PubMed  Google Scholar 

  78. Wertz S, Leigh AKK, Grayston SJ (2012) Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. FEMS Microbiol Ecol 79(1):142–154. https://doi.org/10.1111/j.1574-6941.2011.01204.x

    Article  CAS  PubMed  Google Scholar 

  79. Bao Y, Gao P, He X (2015) The water-level fluctuation zone of three gorges reservoir a unique geomorphological unit. Earth Sci Rev 150:14–24. https://doi.org/10.1016/j.earscirev.2015.07.005

    Article  Google Scholar 

  80. Wu B, Tian J, Bai C, Xiang M, Sun J, Liu X (2013) The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. ISME J. 7(7):1299–1309. https://doi.org/10.1038/ismej.2013.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. de Sosa LL, Glanville HC, Marshall MR, Williams AP, Jones DL (2018) Quantifying the contribution of riparian soils to the provision of ecosystem services. Sci Total Environ. 624:807–819. https://doi.org/10.1016/j.scitotenv.2017.12.179

    Article  CAS  PubMed  Google Scholar 

  82. Wang Y, Hong Y, Ma M, Wu S, Op den Camp HJM, Zhu G, Zhang W, Ye F (2019) Anthropogenic pollution intervenes the recovery processes of soil archaeal community composition and diversity from flooding. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02285

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2016YFC0502703) and the National Natural Science Foundation of China (31470483 and 31570411).

Author information

Authors and Affiliations

Authors

Contributions

X.C. and J.J.T. designed the study. L.L.D., J.Y.Z. and Q.Y.L. carried out the experiment and data analysis. X.C. and L.L.D. wrote the paper.

Corresponding authors

Correspondence to Jianjun Tang or Xin Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 1.26 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Zhou, J., Li, Q. et al. Effects of Land-Use Type and Flooding on the Soil Microbial Community and Functional Genes in Reservoir Riparian Zones. Microb Ecol 83, 393–407 (2022). https://doi.org/10.1007/s00248-021-01746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01746-3

Keywords

Navigation