Skip to main content

Advertisement

Log in

Diversity of Fungi Present in Permafrost in the South Shetland Islands, Maritime Antarctic

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We assess the fungal diversity present in permafrost from different islands in the South Shetland Islands archipelago, maritime Antarctic, using next-generation sequencing (NGS). We detected 1,003,637 fungal DNA reads representing, in rank abundance order, the phyla Ascomycota, Mortierellomycota, Basidiomycota, Chytridiomycota, Rozellomycota, Mucoromycota, Calcarisporiellomycota and Zoopagomycota. Ten taxa were dominant these being, in order of abundance, Pseudogymnoascus appendiculatus, Penicillium sp., Pseudogymnoascus roseus, Penicillium herquei, Curvularia lunata, Leotiomycetes sp., Mortierella sp. 1, Mortierella fimbricystis, Fungal sp. 1 and Fungal sp. 2. A further 38 taxa had intermediate abundance and 345 were classified as rare. The total fungal community detected in the permafrost showed high indices of diversity, richness and dominance, although these varied between the sampling locations. The use of a metabarcoding approach revealed the presence of DNA of a complex fungal assemblage in the permafrost of the South Shetland Islands including taxa with a range of ecological functions among which were multiple animal, human and plant pathogenic fungi. Further studies are required to determine whether the taxa identified are present in the form of viable cells or propagules and which might be released from melting permafrost to other Antarctic habitats and potentially dispersed more widely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All permafrost samples analyzed in this paper are stored in the Laboratory of Microbiology at the Universidade Federal de Minas Gerais, Brazil.

Code Availability

Not applicable.

References

  1. Margesin R, Collins T (2019) Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 103:2537–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Guglielmin M, Gutt J, Jacobs S, Kennicutt II MC, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2014) Antarctic climate change and the environment - an update. Polar Rec 50:237–259

    Article  Google Scholar 

  3. Lee JR, Raymond B, Bracegirdle TJ, Chadès I, Fuller RA, Shaw JD, Terauds A (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature 547:49–54

    Article  CAS  PubMed  Google Scholar 

  4. Fraser CI, Morrison AK, Hogg AMC, Macaya EC, van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2018) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Chang 8:704–708

    Article  Google Scholar 

  5. Potapowicz J, Szumińska D, Szopińska M, Polkowska Ż (2019) The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: part I. Case study of Antarctica. Sci Total Environ 651:1534–1548

    Article  CAS  PubMed  Google Scholar 

  6. Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, McMinn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  7. Convey P, Peck LS (2019) Antarctic environmental change and biological responses. Sci Adv 5:eaaz0888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris SA (1986). The permafrost environment. Croom Helm, London, UK

    Google Scholar 

  9. Biskaborn BK et al (2019) Permafrost is warming at a global scale. Nat Commun 10:1–11

    Article  CAS  Google Scholar 

  10. Xue Y et al (2020) Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost. FEMS Microbiol Ecol 96:fiaa057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilichinsky DA, Wilson GS, Friedmann EI, Mckay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    Article  CAS  PubMed  Google Scholar 

  12. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

    Article  Google Scholar 

  13. da Silva TH, Silva DAS, Thomazini A, Schaefer CEGR, Rosa LH (2019) Antarctic permafrost: an unexplored fungal microhabitat at the edge of life. In: Rosa LH (ed) Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications. Springer Nature, Switzerland, pp 147–164

    Chapter  Google Scholar 

  14. da Silva TH, Silva DAS, de Oliveira FS, Schaefer CEGR, Rosa CA, Rosa LH (2020) Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles 24:565–576

    Article  PubMed  Google Scholar 

  15. Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish EY, Gurina LV, Evtushenko LI, Spirina EV, Vorob'eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of long-term natural cryopreservation. Microbiology 70:356–364

    Article  CAS  Google Scholar 

  16. Kochkina G, Ivanushkina N, Ozerskaya S, Chigineva N, Vasilenko O, Firsov S, Spirina E, Gilichinsky D (2012) Ancient fungi in Antarctic permafrost environments. FEMS Microbiol Ecol 82:501–509

    Article  CAS  PubMed  Google Scholar 

  17. Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:1613–1624

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goordial J, Davila A, Greer CW, Cannam R, DiRuggiero J, McKay CP, Whyte LG (2017) Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environ Microbiol 19:443–458

    Article  CAS  PubMed  Google Scholar 

  19. Embrapa (1997) Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Manual métodos de análise de solo, Rio de Janeiro, p 212

  20. Culmo RF, Swanson KJ, Brennan WP (1989) Application of the PE 2400 CHN and PE 2410 N for soils In: Perkin-Elmer Publication EAN30, Norwalk

  21. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci 3:1400066

    Article  Google Scholar 

  23. White TJ et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  24. Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle. Accessed 13 Nov 2020

  25. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson II MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abarenkov K et al (2020) UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786387

  29. Medinger R et al (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weber AA, Pawlowski J (2013) Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS One 8:e56739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giner CR, Forn I, Romac S, Logares R, de Vargas C, Massana R (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895

    Article  PubMed  Google Scholar 

  33. Hering D et al (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205

    Article  CAS  PubMed  Google Scholar 

  34. Kirk PM et al (2011) Dictionary of the fungi10th edn. CAB International, Wallingford

    Google Scholar 

  35. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  36. Rosa LH, Pinto OHB, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS (2020) DNA metabarcoding to assess the diversity of airborne fungi present in air over Keller Peninsula, King George Island, Antarctica. Microb Ecol. https://doi.org/10.1007/s00248-020-01627-1

  37. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  38. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9

    Google Scholar 

  39. Leff JW (2016) mctoolsr: microbial community data analysis tools. R package version 0.1.0.12. https://github.com/leffj/mctoolsr. Accessed 13 Nov 2020

  40. Bardou P et al (2014) Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:1–7

    Article  Google Scholar 

  41. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  42. Guglielmin M, Fratte MD, Cannone N (2014) Permafrost warming and vegetation changes in continental Antarctica. Environ Res Lett 9:045001

    Article  Google Scholar 

  43. Lulakova P et al (2019) High-alpine permafrost and active-layer soil microbiomes differ in their response to elevated temperatures. Front Microbiol 10:66

    Article  Google Scholar 

  44. Rosa LH, Zani CL, Cantrell CL, Duke SO, van Dijck P, Desideri A, Rosa CA (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer Nature, Switzerland, pp 1–18

    Chapter  Google Scholar 

  45. Gomes EC et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  CAS  PubMed  Google Scholar 

  46. Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  PubMed  CAS  Google Scholar 

  47. Ogaki MB, Teixeira DR, Vieira R, Lírio JM, Felizardo JPS, Abuchacra RC, Cardoso RP, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Ceravolo IP, Pereira PO, Rosa CA, Rosa LH (2020) Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol 124:601–611

    Article  CAS  PubMed  Google Scholar 

  48. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  49. Rosa LH, Almeida Vieira Mde L, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  50. Rosa LH, de Sousa JRP, de Menezes GCA, da Costa Coelho L, Carvalho-Silva M, Convey P, Câmara PEAS (2020) Opportunistic fungal assemblages present on fairy rings spread on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596

    Article  Google Scholar 

  51. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves TMA, S Junior PA, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL, Junior PAS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    Article  PubMed  Google Scholar 

  53. Godinho VM, de Paula MTR, Silva DAS, Paresque K, Martins AP, Colepicolo P, Rosa CA, Rosa LH (2019) Diversity and distribution of cryptic cultivable fungi associated with marine animals of Antarctica. Fungal Biol 123:507–516

    Article  PubMed  Google Scholar 

  54. Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Article  Google Scholar 

  55. Alves IM et al (2019) The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica. Extremophiles 23:327–336

    Article  PubMed  Google Scholar 

  56. Rosa LH, da Silva TH, Ogaki MB, Pinto OHB, Stech M, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS (2020) DNA metabarcoding high-throughput sequencing uncovers cryptic fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci Rep 10:21986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Longcore JE, Barr DJ, Desaulniers N (1995) Powellomyces, a new genus in the Spizellomycetales. Can J Bot 73:1385–1390

    Article  Google Scholar 

  58. Quandt CA, Beaudet D, Corsaro D, Walochnik J, Michel R, Corradi N, James TY (2017) The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. eLife 6:e29594

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  PubMed  Google Scholar 

  60. Schütte UME, Henning JA, Ye Y, Bowling A, Ford J, Genet H, Waldrop MP, Turetsky MR, White JR, Bever JD (2019) Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J Ecol 107:1737–1752

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from CNPq, PROANTAR, FAPEMIG, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), INCT Criosfera 2. P. Convey is supported by NERC core funding to the British Antarctic Survey’s ‘Biodiversity, Evolution and Adaptation’ Team.

Author information

Authors and Affiliations

Authors

Contributions

THS and LHR conceived the study and collected the samples. THS performed DNA extraction from permafrost samples. OHBZ performed the fungal sequences analysis. FSO performed the permafrost physicochemical analysis. THS, LHR, PEASC, OHBZ, MCS, FSO, PC and CAR analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Ethics Approval

The collections and studies performed in Antarctic Peninsula were authorized by the Secretariat of the Antarctic Treaty and by PROANTAR.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 49 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, T.H., Câmara, P.E.A.S., Pinto, O.H.B. et al. Diversity of Fungi Present in Permafrost in the South Shetland Islands, Maritime Antarctic. Microb Ecol 83, 58–67 (2022). https://doi.org/10.1007/s00248-021-01735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01735-6

Keywords

Navigation