North American Fireflies Host Low Bacterial Diversity

Abstract

Although there are numerous studies of firefly mating flashes, lantern bioluminescence, and anti-predation lucibufagin metabolites, almost nothing is known about their microbiome. We therefore used 16S rRNA community amplicon sequencing to characterize the gut and body microbiomes of four North American firefly taxa: Ellychnia corrusca, the Photuris versicolor species complex, Pyractomena borealis, and Pyropyga decipiens. These firefly microbiomes all have very low species diversity, often dominated by a single species, and each firefly type has a characteristic microbiome. Although the microbiomes of male and female fireflies did not differ from each other, Ph. versicolor gut and body microbiomes did, with their gut microbiomes being enriched in Pseudomonas and Acinetobacter. Ellychnia corrusca egg and adult microbiomes were unique except for a single egg microbiome that shared a community type with E. corrusca adults, which could suggest microbial transmission from mother to offspring. Mollicutes that had been previously isolated from fireflies were common in our firefly microbiomes. These results set the stage for further research concerning the function and transmission of these bacterial symbionts.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data are available on NCBI under BioProject PRJNA563849. Raw sequencing reads are deposited in SRA under BioSample numbers SAMN14678004–SAMN14678257.

Code Availability

The commands used for all analyses are attached as Suppl. File S2.

References

  1. 1.

    Slipinski SA, Leschen RAB, Lawrence JF (2011) Order Coleoptera Linnaeus, 1758. In: Zhang Z-Q (ed) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richnes. Zootaxa 3148:203–208. https://doi.org/10.11646/zootaxa.3148.1.26

  2. 2.

    Faust LF (2017) Fireflies, glow-worms, and lightning bugs!: Identification and natural history of the fireflies of the Eastern and Central United States and Canada. University of Georgia Press, Athens

    Google Scholar 

  3. 3.

    Barber HS (1951) Fireflies of the genus Photuris. Smithson Misc Collect 117:1–66

    Google Scholar 

  4. 4.

    Faust LF, Hughes LS, Zloba MH, Farrington HL (2019) Life history and updated range extension of Photinus scintillans (Coleoptera: Lampyridae) with new Ohio records and regional observations for several firefly species. Ohio Biol Surv Notes 9:16–34

    Google Scholar 

  5. 5.

    Eisner T, Goetz MA, Hill DE, Smedley SR, Meinwald J (1997) Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey. Proc Natl Acad Sci U S A 94:9723–9728. https://doi.org/10.1073/pnas.94.18.9723

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Goetz MA, Meinwald J, Eisner T (1981) Lucibufagins, IV. New defensive steroids and a pterin from the firefly, Photinus pyralis (Coleoptera: Lampyridae). Experientia 37:679–680. https://doi.org/10.1007/BF01967916

    CAS  Article  Google Scholar 

  7. 7.

    Smedley SR, Risteen RG, Tonyai KK, Pitino JC, Hu Y, Ahmed ZB, Christofel BT, Gaber M, Howells NR, Mosey CF, Rahim FU, Deyrup ST (2017) Bufadienolides (lucibufagins) from an ecologically aberrant firefly (Ellychnia corrusca). Chemoecology 27:141–153. https://doi.org/10.1007/s00049-017-0240-6

    CAS  Article  Google Scholar 

  8. 8.

    Deyrup ST, Risteen RG, Tonyai KK, Farrar MA, D'Antonio BE, Ahmed ZB, Christofel BT, Howells NR, Smedley SR (2017) Escape into winter: Does a phenological Shift by Ellychnia corrusca (winter firefly) shield it from a specialist predator (Photuris)? Northeast Nat 24:147–166. https://doi.org/10.1656/045.024.s717

    Article  Google Scholar 

  9. 9.

    Faust L, Faust H (2014) The occurrence and behaviors of North American fireflies (Coleoptera: Lampyridae) on milkweed, Asclepias syriaca L. Coleopt Bull 68:283–291. https://doi.org/10.1649/0010-065x-68.2.283

    Article  Google Scholar 

  10. 10.

    Rooney JA, Lewis SM (2000) Notes on the life history and mating behavior of Ellychnia corrusca (Coloeptera: Lampyridae). Fla Entomol 83:324–334. https://doi.org/10.2307/3496351

    Article  Google Scholar 

  11. 11.

    Faust L (2012) Fireflies in the snow: Observations on two early-season arboreal fireflies Ellychnia corrusca and Pyractomena borealis. Lampyrid 2:48–71

    Google Scholar 

  12. 12.

    Lloyd JE (1965) Aggressive Mimicry in Photuris: Signal repertoires by femmes fatales. Science 149:653–654

  13. 13.

    Arias-Cordero E, Ping L, Reichwald K, Delb H, Platzer M, Boland W (2012) Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS One 7:e51557. https://doi.org/10.1371/journal.pone.0051557

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lundgren JG, Lehman RM (2010) Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS One 5:e10831. https://doi.org/10.1371/journal.pone.0010831

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Grünwald S, Pilhofer M, Höll W (2010) Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst Appl Microbiol 33:25–34. https://doi.org/10.1016/j.syapm.2009.10.002

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kaltenpoth M, Steiger S (2014) Unearthing carrion beetles’ microbiome: characterization of bacterial and fungal hindgut communities across the Silphidae. Mol Ecol 23:1251–1267. https://doi.org/10.1111/mec.12469

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kolasa M, Ścibior R, Mazur MA, Kubisz D, Dudek K, Kajtoch Ł (2019) How hosts taxonomy, trophy, and endosymbionts shape microbiome diversity in beetles. Microb Ecol 78:995–1013. https://doi.org/10.1007/s00248-019-01358-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental dtage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. https://doi.org/10.1128/AEM.01226-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37:699–735. https://doi.org/10.1111/1574-6976.12025

    CAS  Article  Google Scholar 

  21. 21.

    Estes AM, Hearn DJ, Snell-Rood EC, Feindler M, Feeser K, Abebe T, Dunning Hotopp JC, Moczek AP (2013) Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS One 8:e79061. https://doi.org/10.1371/journal.pone.0079061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Shukla SP, Plata C, Reichelt M, Steiger S, Heckel DG, Kaltenpoth M, Vilcinskas A, Vogel H (2018) Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc Natl Acad Sci U S A 115:11274–11279. https://doi.org/10.1073/pnas.1812808115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hackett KJ, Whitcomb RF, Tully JG, Lloyd JE, Anderson JJ, Clark TB, Henegar RB, Roset DL, Clark EA, Vaughn JL (1992) Lampyridae (Coleoptera): A plethora of Mollicute associations. Microb Ecol 23:181–193

    CAS  Article  Google Scholar 

  24. 24.

    Williamson DL, Tully JG, Rose DL et al (1990) Mycoplasma somnilux sp. nov., Mycoplasma luminosum sp. nov., and Mycoplasma lucivorax sp. nov., new sterol-requiring mollicutes from firefly beetles (Coleoptera: Lampyridae). Int J Syst Bacteriol 40:160–164. https://doi.org/10.1099/00207713-40-2-160

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Hackett KJ, Whitcomb RF, French FE et al (1996) Spiroplasma corruscae sp. nov., from a firefly beetle (Coleoptera: Lampyridae) and tabanid flies (Diptera: Tabanidae). Int J Syst Bacteriol 46:947–950. https://doi.org/10.1099/00207713-46-4-947

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Tully JG, Rose DL, Hackett KJ et al (1989) Mycoplasma ellychniae sp. nov., a sterol-requiring Mollicute from the firefly beetle Ellychnia corrusca. Int J Syst Bacteriol 39:284–289. https://doi.org/10.1099/00207713-39-3-284

    CAS  Article  Google Scholar 

  27. 27.

    Stevens C, Tang AY, Jenkins E, Goins RL, Tully JG, Rose DL, Konai M, Williamson DL, Carle P, Bové JM, Hackett KJ, French FE, Wedincamp J, Henegar RB, Whitcomb RF (1997) Spiroplasma lampyridicola sp. nov., from the firefly beetle Photuris pennsylvanicus. Int J Syst Bacteriol 47:709–712. https://doi.org/10.1099/00207713-47-3-709

    Article  Google Scholar 

  28. 28.

    Tully JG, Whitcomb RF, Hackett KJ et al (1994) Taxonomic descriptions of eight new non-sterol-requiring mollicutes assigned to the genus Mesoplasma. Int J Syst Bacteriol 44:685–693. https://doi.org/10.1099/00207713-44-4-685

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Wedincamp J, French FE, Whitcomb RF, Henegar RB (1996) Spiroplasmas and Entomoplasmas (Procaryotae: Mollicutes) associated with tabanids (Diptera: Tabanidae) and fireflies (Coleoptera: Lampyridae). J Invertebr Pathol 68:183–186

    Article  Google Scholar 

  30. 30.

    Tully JG, Bove JM, Laigret F, Whitcomb RF (1993) Revised taxonomy of the class Mollicutes: Proposed elevation of a monophyletic cluster of arthropod-associated Mollicutes to ordinal rank (Entomoplasmatales ord. nov.), with provision for familial rank to separate species with nonhelical morphology. Int J Syst Bacteriol 43:630–630. https://doi.org/10.1099/00207713-43-3-630a

    Article  Google Scholar 

  31. 31.

    Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE (2014) Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol Ecol 23:1268–1283. https://doi.org/10.1111/mec.12611

    Article  PubMed  Google Scholar 

  32. 32.

    Lee KM, Adams M, Klassen JL (2019) Evaluation of DESS as a storage medium for microbial community analysis. PeerJ 7:e6414. https://doi.org/10.7717/peerj.6414

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  34. 34.

    R Core Team (2018) R: A Language and Environment for Statistical Computing

  35. 35.

    Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    McMurdie PJ, Holmes S (2013) Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219

    CAS  Article  Google Scholar 

  38. 38.

    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:643–648. https://doi.org/10.1093/nar/gkt1209

    CAS  Article  Google Scholar 

  39. 39.

    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. https://doi.org/10.1186/s40168-018-0605-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Oksanen J, Blanchet FG, Friendly M, et al (2019) vegan: Community Ecology Package. R package version 2.5-4

  41. 41.

    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:e550. https://doi.org/10.1186/s13059-014-0550-8

    CAS  Article  Google Scholar 

  42. 42.

    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11:e1004226. https://doi.org/10.1371/journal.pcbi.1004226

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Csardi G, Nepusz T (2005) The igraph software package for complex network research. Int J Complex Syst 1695.https://igraph.org

  45. 45.

    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Binetruy F, Bailly X, Chevillon C, Martin OY, Bernasconi MV, Duron O (2019) Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks Tick Borne Dis 10:575–584. https://doi.org/10.1016/j.ttbdis.2019.02.001

    Article  PubMed  Google Scholar 

  48. 48.

    Gasparich GE, Kuo C (2019) Genome analysis-based union of the genus Mesoplasma with the genus Entomoplasma. Int J Syst Evol Microbiol 69:2735–2738. https://doi.org/10.1099/ijsem.0.003548

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Hammer TJ, Sanders JG, Fierer N (2019) Not all animals need a microbiome. FEMS Microbiol Lett 366:fnz117. https://doi.org/10.1093/femsle/fnz117

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Ohbayashi T, Takeshita K, Kitagawa W, Nikoh N, Koga R, Meng XY, Tago K, Hori T, Hayatsu M, Asano K, Kamagata Y, Lee BL, Fukatsu T, Kikuchi Y (2015) Insect’s intestinal organ for symbiont sorting. Proc Natl Acad Sci U S A 112:5179–5188. https://doi.org/10.1073/pnas.1511454112

    CAS  Article  Google Scholar 

  51. 51.

    Hammer TJ, Dickerson JC, Fierer N (2015) Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota. PeerJ 8:e1190. https://doi.org/10.7717/peerj.1190

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Erin L. Mostoller and Dr. Craig W Schneider, both from Trinity College, Hartford, CT, and Dr. Steven Deyrup from Siena College, Loudonville, NY, for their assistance with obtaining the firefly samples. We would also like to thank the members of the Klassen Lab for their thoughtful feedback on this manuscript before submission and the UConn Microbial Analysis, Resources, and Services facility for microbiome sequencing.

Funding

This work was supported by a University of Connecticut Scholarship Facilitation Fund grant to J.L.K.

Author information

Affiliations

Authors

Contributions

Sample collection: SRS; experiment design: EAG, SRS, and JLK; data analysis: EAG; figure and table creation: EAG; writing (draft preparation and editing): EAG and JLK.

Corresponding author

Correspondence to Jonathan L. Klassen.

Ethics declarations

Consent for Publication

Emily A. Green and Jonathan L. Klassen approve this for publication. Scott R. Smedley is deceased and therefore was unable to provide explicit consent.

Additional information

Scott R. Smedley Deceased

Supplementary Information

ESM 1

(XLSX 39 kb).

ESM 2

(DOCX 37 kb).

ESM 3

(DOCX 1200 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, E.A., Smedley, S.R. & Klassen, J.L. North American Fireflies Host Low Bacterial Diversity. Microb Ecol (2021). https://doi.org/10.1007/s00248-021-01718-7

Download citation

Keywords

  • Fireflies
  • Microbiome
  • Microbial ecology
  • Insects
  • Low-complexity communities
  • Mollicutes