Skip to main content

Factors Structuring the Epiphytic Archaeal and Fungal Communities in a Semi-arid Mediterranean Ecosystem

Abstract

The phyllosphere microbiome exerts a strong effect on plants’ productivity, and its composition is determined by various factors. To date, most phyllosphere studies have focused on bacteria, while fungi and especially archaea have been overlooked. We studied the effects of plant host and season on the abundance and diversity of the epiphytic archaeal and fungal communities in a typical semi-arid Mediterranean ecosystem. We collected leaves in two largely contrasting seasons (summer and winter) from eight perennial species of varying attributes which could be grouped into the following: (i) high-canopy, evergreen sclerophyllοus shrubs with leathery leaves, and low-canopy, either semi-deciduous shrubs or non-woody perennials with non-leathery leaves, and (ii) aromatic and non-aromatic plants. We determined the abundance of epiphytic Crenarchaea, total fungi, Alternaria and Cladosporium (main airborne fungi) via q-PCR and the structure of the epiphytic archaeal and fungal communities via amplicon sequencing. We observed a strong seasonal effect with all microbial groups examined showing higher abundance in summer. Plant host and season were equally important determinants of the composition of the fungal community consisted mostly of Ascomycota, with Hypocreales dominating in winter and Capnodiales and Pleosporales in summer. In contrast, the archaeal community showed plant host driven patterns dominated by the Soil Crenarchaeotic Group (SCG) and Aenigmarchaeota. Plant habit and aromatic nature exhibited filtering effects only on the epiphytic fungal communities. Our study provides a first in-depth analysis of the key determinants shaping the phyllosphere archaeal and fungal communities of a semi-arid Mediterranean ecosystem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

All relevant nucleic acids data have been submitted to relevant databases (see manuscript). All other data generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. 1.

    Morris CE, Kinkel LL (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Hecht-Poinar EI, Elliot VJ, Lindow SE (eds) Phyllosphere Microbiology. APS Press, Minnesota, pp 365–375

    Google Scholar 

  2. 2.

    Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–17

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111:13715–13720

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L’Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Taffner J, Cernava T, Erlacher A, Berg G (2019) Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill.). J Adv Res 19:39–48

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Scheublin TR, Deusch S, Moreno-forero SK, Müller JA, Van Der Meer JR, Leveau JHJ (2014) Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere : induction of pollutant degradation genes by natural plant phenolic compounds. Environ Microbiol 16:2212–2225

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    PubMed  Article  Google Scholar 

  10. 10.

    Coince A, Cordier T, Lengellé J, Defossez E, Vacher C, Robin C, Buée M, Marçais B (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9:e100668

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Yao H, Sun X, He C, Maitra P, Li XC, Guo LD (2019) Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:e57

    Article  Google Scholar 

  12. 12.

    Taffner J, Erlacher A, Bragina A, Berg C, Moissl-eichinger C, Berg G (2018) What is the role of Archaea in plants ? New insights from the vegetation of alpine bogs. mSphere 3:e00122–e00118

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS (2020) Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. mBio 11:e02785–e02719

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Maignien LL, DeForce EA, Chafee ME, Eren AM, Simmons SL (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5:e00682–e00613

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Abdelfattah A, Sanzani SM, Wisniewski M, Berg G, Cacciola SO, Schena L (2019) Revealing cues for fungal interplay in the plant–air interface in vineyards. Front Plant Sci 10:922. https://doi.org/10.3389/fpls.2019.00922

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:27

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Hunter PJ, Pink DAC, Bending GD (2015) Cultivar-level genotype differences influence diversity and composition of lettuce (Lactuca sp.) phyllosphere fungal communities. Fungal Ecol 17:183–186

    Article  Google Scholar 

  18. 18.

    Laforest-Lapointe I, Messier C, Kembel SW (2016) Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. Peer J 4:e2367

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S (2012) Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamrix tress across the Sonoran desert. Appl Environ Microbiol 78:6187–6193

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant-Microbe Interact 28:274–285

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P (2018) Endophytic and Epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb Ecol 76:668–679

    PubMed  Article  Google Scholar 

  23. 23.

    Vokou D, Genitsaris S, Karamanoli K, Vareli K, Zachari M, Voggoli D, Monokrousos N, Halley JM, Sainis I (2019) Metagenomic characterization reveals pronounced seasonality in the diversity and structure of the phyllosphere bacterial community in a Mediterranean ecosystem. Microorganisms 7(11):518 doi:10.3390

    PubMed Central  Article  PubMed  Google Scholar 

  24. 24.

    Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Microb Ecol 50:185–196

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HIA, Monokrousos N, Halley JM, Sainis I (2012) Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microb Ecol 64:714–724

    PubMed  Article  Google Scholar 

  26. 26.

    Grinn-Gofroń A, Nowosad J, Bosiacka B, Camacho I, Pashley C, Belmonte J, De Linares C, Ianovici N, Manzano JMM, Sadyś M, Skjøth C, Rodinkova V, Tormo-Molina R, Vokou D, Fernández-Rodríguez S, Damialis A (2019) Airborne Alternaria and Cladosporium fungal spores in Europe: forecasting possibilities and relationships with meteorological parameters. Sci Total Environ 653:938–946

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Yadav RKP, Bosabalidis AM, Vokou D (2004) Leaf structural features of Mediterranean perennial species: plasticity and life form specificity. J Biol Res 2:21–34

    Google Scholar 

  28. 28.

    Moulas C, Petsoulas C, Rousidou K, Perruchon C, Karas P, Karpouzas DG (2013) Effects of systemic pesticides imidacloprid and metalaxyl on the phyllosphere of pepper plants. Biomed Res Int 2013:1–8

    Article  CAS  Google Scholar 

  29. 29.

    Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Caporaso JG, Ackermann G, Apprill A, Bauer M, Berg-Lyons D, Betley J, Fierer N, Fraser L, Fuhrman JA, Gilbert JA, Gormley N, Humphrey G, Huntley J, Jansson JK, Knight R, Lauber CL, Lozupone CA, McNally S, Needham DM, Owens SM, Parada AE, Parsons R, Smith G, Thompson LR, Thompson L, Turnbaugh PJ, Walters WA, Weber L (2018) Earth microbiome project: EMP 16S Illumina amplicon protocol. In: protocols.io. https://www.protocols.io/view/emp-16s-illumina-amplicon-protocol-nuudeww. Accessed 16 Jan 2021

  31. 31.

    Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) FLEXBAR—Flexible barcode and adapter processing for. Biology 1:895–905

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Bolger AM, Lohse M, Usadel B (2014) Genome analysis trimmomatic : a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

  34. 34.

    Magoc T, Salzberg SL (2011) FLASH : fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Edgar RC (2013) UPARSE : highly accurate OTU sequences from microbial amplicon reads. Nat Methods 647:1–5

    Google Scholar 

  36. 36.

    Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J (2014) LotuS : an efficient and user-friendly OTU processing pipeline. Microbiome 2:1–7

    Article  Google Scholar 

  37. 37.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2020) Full UNITE+INSD dataset for eukaryotes.Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786373

    Chapter  Google Scholar 

  39. 39.

    Hauswedell H, Singer J, Reinert K (2014) Lambda : the local aligner for massive biological data. Bioinformatics 30:349–355

    Article  CAS  Google Scholar 

  40. 40.

    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glockner FO (2014) The SILVA and ‘“ All-species Living Tree Project ( LTP )”’ taxonomic frameworks. Nucleic Acids Res 42:643–648

    Article  CAS  Google Scholar 

  41. 41.

    R Core Team (2017) R: a language environment for statistical computing. https://cloud.r-project.org/. Accessed 16 Jan 2021

  42. 42.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, Hara RBO, Simpson GL, Solymos P, Stevens MHH, Szoecs E (2018) Vegan: community ecology package. R package version 25-1 0–291

  43. 43.

    Inácio J, Pereira P, De Carvalho M, Fonseca Á, Amaral-Collaço MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353

    PubMed  Article  Google Scholar 

  44. 44.

    Osono T, Mori A (2005) Seasonal and leaf age-dependent changes in occurrence of phyllosphere fungi of giant dogwood. Mycoscience 46:273–279

    Article  Google Scholar 

  45. 45.

    Vardavakis E (1988) Seasonal fluctuation of non-parasitic mycoflora associated with living leaves of Cistus incanus Arbutus unedo and Quercus coccifera. Mycologia 80:200–210

    Article  Google Scholar 

  46. 46.

    Oliveira M, Delgado L, Ribeiro H, Abreu I (2010) Fungal spores from Pleosporales in the atmosphere of urban and rural locations in Portugal. J Environ Monit 12:1187–1194

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Kasprzyk I, Kaszewski BM, Weryszko-Chmielewska E, Nowak M, Sulborska A, Kaczmarek J, Szymanska A, Haratym W, Jedryczka M (2016) Warm and dry weather accelerates and elongates Cladosporium spore seasons in Poland. Aerobiologia 32:109–126

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea 44:344–353

    Google Scholar 

  50. 50.

    Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Borrel G, Brugere J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C (2020) The host-associated archaeome. Nat Rev Microbiol 18:622–636. https://doi.org/10.1038/s41579-020-0407-y

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Chi W-C, Chen W, He C-C, Guo S-Y, Cha H-J, Tsang LM, Ho TW, Pang K-L (2019) A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var. xiamenensis revealed by isolation and metabarcoding analyses. PeerJ 7:e7293

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Kepler RM, Maul JE, Rehner SA (2017) Managing the plant microbiome for biocontrol fungi: examples from Hypocreales. Curr Opin Microbiol 37:48–53

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Contreras-Cornejo HA, Macias-Rodriguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw036

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Mascarin GM, Pereira-Junior RA, Fernandes EKK, Qunitela ED, Dunlap CA, Arthurs SP (2018) Phenotype responses to abiotic stresses, asexual reproduction and virulence among isolates of the entomopathogenic fungus Cordyceps javanica (Hypocreales: Cordycipitaceae). Microbiol Res 216:12–22

    PubMed  Article  Google Scholar 

  56. 56.

    Qian X, Duan T, Sun X, Zheng Y, Wang Y, Hu M, Yao H, Ji N, Lv P, Chen L, Shi M, Guo L, Zhang D (2018) Host genotype strongly influences phyllosphere fungal communities associated with Mussaenda pubescens var. alba (Rubiaceae). Fungal Ecol 36:141–151

    Article  Google Scholar 

  57. 57.

    Izuno A, Kanzaki M, Artchawakom T, Wachrinrat C, Isagi Y (2016) Vertical structure of phyllosphere fungal communities in a tropical forest in Thailand uncovered by high-throughput sequencing. PLoS One 11(11):e0166669

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Muchembled J, Deweer C, Sahmer K, Halama P (2018) Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole. Environ Sci Pollut Res 25:29921–29928

    Article  CAS  Google Scholar 

  59. 59.

    Gabriel KT, Kartforosh L, Crow Jr SA, Cornelison CT (2018) Antimicrobial activity of essential oils against the fungal pathogens Ascosphaera apis and Pseudogymnoascus destructans. Mycopathologia 183:921–934

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Taffner J, Bergna A, Cernava T, Wassermann B, Moissl-Eichinger C, Berg G (2019) Plant-associated archaea: colonization, vertical transmission, and interactions. Proceedings 6th Theodor Escherich Symposium, p 22

    Google Scholar 

  61. 61.

    Taubner RS, Schleper C, Firneis M, Rittmann S (2015) Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies. Life 5:1652–1686

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Funding

This work was supported by (a) the project “ESEPMINENT” implemented under the “ARISTEIA” Action of the “OPERATIONAL PROGRAMME EDUCATION AND LIFELONG LEARNING” and is co-funded by the European Social Fund (ESF) and National Resources and (b) matching funds of the IAPP-FP7-MC project LOVE-TO-HATE provided by the General Secretariat of Research and Technology. A. Katsoula is supported by a PhD scholarship from the State Scholarship Foundation of Greece with resources of the EP “Development of Human Resources, Education and Life-long Learning 2014-2020” and co-funded by the European Social Fund and the Greek State.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to D. Vokou or D. G. Karpouzas.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 3302 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katsoula, A., Vasileiadis, S., Karamanoli, K. et al. Factors Structuring the Epiphytic Archaeal and Fungal Communities in a Semi-arid Mediterranean Ecosystem. Microb Ecol 82, 638–651 (2021). https://doi.org/10.1007/s00248-021-01712-z

Download citation

Keywords

  • Phyllosphere
  • Fungal communities
  • Archaeal communities
  • Season
  • Plant host
  • Semi-arid ecosystems