Skip to main content

Profiling of Microbial Communities in the Sediments of Jinsha River Watershed Exposed to Different Levels of Impacts by the Vanadium Industry, Panzhihua, China

Abstract

The mining, smelting, manufacturing, and disposal of vanadium (V) and associated products have caused serious environmental problems. Although the microbial ecology in V-contaminated soils has been intensively studied, the impacted watershed ecosystems have not been systematically investigated. In this study, geochemistry and microbial structure were analyzed along ~30 km of the Jinsha River and its two tributaries across the industrial areas in Panzhihua, one of the primary V mining and production cities in China. Geochemical analyses showed different levels of contamination by metals and metalloids in the sediments, with high degrees of contamination observed in one of the tributaries close to the industrial park. Analyses of the V4 hypervariable region of 16S rRNA genes of the microbial communities in the sediments showed significant decrease in microbial diversity and microbial structure in response to the environmental gradient (e.g., heavy metals, total sulfur, and total nitrogen). Strong association of the taxa (e.g., Thauera, Algoriphagus, Denitromonas, and Fontibacter species) with the metals suggested selection for these potential metal-resistant and/or metabolizing populations. Further co-occurrence network analysis showed that many identified potential metal-mediating species were among the keystone taxa that were closely associated in the same module, suggesting their strong inter-species interactions but relative independence from other microorganisms in the hydrodynamic ecosystems. This study provided new insight into the microbe-environment interactions in watershed ecosystems differently impacted by the V industries. Some of the phylotypes identified in the highly contaminated samples exhibited potential for bioremediation of toxic metals (e.g., V and Cr).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Baroch EF (1982) Vanadium and vanadium alloys. In: Kirk-Othmer (ed) Kirk-Othmer Encyclopedia of Chemical Technology3rd edn. John Wiley & Sons, New York, pp 673–687

    Google Scholar 

  2. 2.

    Rehder D (1991) The bioinorganic chemistry of vanadium. Angew Chem Int Ed Eng 30:148–167

    Article  Google Scholar 

  3. 3.

    Huang JH, Huang F, Evans L, Glasauer S (2015) Vanadium: global (bio)geochemistry. Chem Geol 417:68–89

    Article  CAS  Google Scholar 

  4. 4.

    Nriagu JO (1998) History, occurrence and uses of vanadium. In: Nriagu JO (ed) Vanadium in the Environment Part 1 Chemistry and Biochemistry. John Wiley & Sons Inc., New York, pp 1–24

    Google Scholar 

  5. 5.

    Watt JAJ, Burke IT, Edwards RA, Malcolm HM, Mayes WM, Olszewska JP, Pan G, Graham MC, Heal KV, Rose NL, Turner SD, Spears BM (2018) Vanadium: a re-emerging environmental hazard. Environ Sci Technol 52:11973–11974

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol 42:249–265

    Article  Google Scholar 

  7. 7.

    Leonard A, Gerber G (1998) Mutagenicity, carcinogenicity, and teratogenicity of vanadium. Adv Environ Sci Technol 31:143–149

    Google Scholar 

  8. 8.

    ATSDR (2012) Public Health Statement: Vanadium, 1-9.

  9. 9.

    Teng Y, Ni S, Zhang C, Wang J, Lin X, Huang Y (2006) Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan. China Chin J Geochem 25:379–385

    Article  Google Scholar 

  10. 10.

    Yang J, Teng Y, Wu J, Chen H, Wang G, Song L, Yue W, Zuo R, Zhai Y (2017) Current status and associated human health risk of vanadium in soil in China. Chemosphere 171:635–643

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Yelton AP, Williams KH, Fournelle J, Wrighton KC, Handley KM, Banfield JF (2013) Vanadate and acetate biostimulation of contaminated sediments decreases diversity, selects for specific taxa, and decreases aqueous V5+ concentration. Environ Sci Technol 47:6500–6509

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Kamika I, Momba MNB (2014) Microbial diversity of Emalahleni Mine water in South Africa and tolerance ability of the predominant organism to vanadium and nickel. PLoS One 9:e86189

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Wang Y, Zhang B, Wang S, Zhong Y (2020) Temporal dynamics of heavy metal distribution and associated microbial community in ambient aerosols from vanadium smelter. Sci Total Environ 735:139360

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Li YN, Zhang BG, Liu ZQ, Wang S, Yao J, Borthwick AGL (2020) Vanadium contamination and associated health risk of farmland soil near smelters throughout China. Environ Pollut 263:114540

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Zhang H, Zhang BG, Wang S, Chen J, Jiang B, Xing Y (2020) Spatiotemporal vanadium distribution in soils with microbial community dynamics at vanadium smelting site. Envion Pollut 265:11782

    Google Scholar 

  16. 16.

    Imtiaz M, Rizwan MS, Xiong SL, Li HL, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu SX (2015) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Naeem A, Westerhoff P, Mustafa S (2007) Vanadium removal by metal (hydr)oxide adsorbents. Water Res 41:1596–1602

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Canadian Council of Ministers of the Environment (1999) Canadian soil quality guidelines for the protection of environmental and human health: Vanadium. In: Canadian environmental quality guidelines, Canadian Council of Ministers of the Environment, Winnipeg

  19. 19.

    Cao XL, Diao MH, Zhang BG, Liu H, Wang S, Yang M (2017) Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China. Chemosphere 183:9–17

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Wang S, Zhang BG, Li TT, Li ZY, Fu J (2020) Soil vanadium(V)-reducing related bacteria drive community response to vanadium pollution from a smelting plant over multiple gradients. Environ Int 138:105630

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Zhang J, Dong HL, Zhao LD, McCarrick R, Agrawal A (2014) Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens. Chem Geol 370:29–39

    Article  CAS  Google Scholar 

  22. 22.

    Ortiz-bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Carpentier W, SandraI K, De Smet I, Brigé A, De Smet L, Beeumen JV (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Yurkova NA, Lyalikova NN (1993) Oxidation of molecular-hydrogen and carbon-monoxide by facultatively chemolithotrophic vanadate-reducing bacteria. Microbiology 62:367–370

    Google Scholar 

  25. 25.

    Bisconti L, Pepi M, Mangani S, Baldi F (1997) Reduction of vanadate to vanadyl by a strain of Saccharomyces cerevisiae. Biometals 10:239–246

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Zhang BG, Jiang YF, Zuo KC, He C, Dai YR, Ren ZJ (2020) Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater. J Hazard Mater 382:121228

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Zhang BG, Qiu R, Lu L, Chen X, He C, Lu JP, Ren ZJ (2018) Autotrophic Vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent iron. Environ Sci Technol 52:7434–7442

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Zhang BG, Wang ZL, Shi JX, Dong HL (2020) Sulfur-based mixotrophic bio-reduction for efficient removal of chromium (VI) in groundwater. Geochim Cosmochim Acta 268:296–309

    Article  CAS  Google Scholar 

  29. 29.

    Yurkova NA, Lyalikova NN (1990) New facultative chemolithotrophic bacteria reducing vanadate. Microbiology 59:672–677

    Google Scholar 

  30. 30.

    Sun X, Qiu L, Kolton M, Haggblom M, Xu R, Kong T, Gao P, Li B, Jiang C, Sun W (2020) V(V) Reduction by Polaromonas spp. in Vanadium Mine Tailings. Environ Sci Technol 54:14442–14454

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Zhang BG, Wang S, Diao MH, Fu J, Xie MM, Shi JX, Liu ZQ, Jiang YF, Cao XL, Borthwick AGL (2019) Microbial community responses to vanadium distributions in mining geological environments and bioremediation assessment. J Geophys Res-Biogeo 124:601–615

    Article  CAS  Google Scholar 

  32. 32.

    Keshri J, Mankazana BBJ, Momba MNB (2015) Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Appl Microbiol Biotechnol 99:3233–3242

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Li L (2019) Watershed reactive transport. In: Druhan, J, Tournassat, C (eds.) Reactive Transport in Natural and Engineered Systems. Mineralogical Society of America, pp. 381-418

  34. 34.

    Hosen JD, Febria CM, Crump BC, Palmer MA (2017) Watershed urbanization linked to differences in stream bacterial community composition. Front Microbiol 8:1452

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Ibekwe AM, Ma JC, Murinda SE (2016) Bacterial community composition and structure in an urban river impacted by different pollutant sources. Sci Total Environ 566:1176–1185

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Teng YG, Yang J, Zuo R, Wang JS (2011) Impact of urbanization and industrialization upon surface water quality: a pilot study of Panzhihua mining town. J Earth Sci-China 22:658–668

    Article  CAS  Google Scholar 

  37. 37.

    Teng Y, Ni S, Tuo X, Zhang C, Xu Z (2003) Heavy metal pollution of stream sediment in Panzhihua Area. Resour Environ Yangtze Basin 12:569–573

    CAS  Google Scholar 

  38. 38.

    Yingqi L, Xianglian D, Junwei W, Xiangjian X (2013) Graphite Digestion-ICP-MS Simultaneous Determination of Six Elements in the Soil. Guangdong Chem Indust 40:123–124

    Google Scholar 

  39. 39.

    Gibbs CR (1976) Characterization and application of ferrozine iron reagent as a ferrous iron indicator. Anal Chem 48:1197–1200

    Article  CAS  Google Scholar 

  40. 40.

    Dong Y, Sanford RA, Chang YJ, McInerney MJ, Fouke BW (2017) Hematite reduction buffers acid generation and enhances nutrient uptake by a fermentative iron reducing bacterium, Orenia metallireducens Strain Z6. Environ Sci Technol 51:232–242

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Sun WM, Xiao EZ, Dong YR, Tang S, Krumins V, Ning ZP, Sun M, Zhao YL, Wu SL, Xiao TF (2016) Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci Total Environ 550:297–308

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Rinklebe J, Antoniadis V, Shaheen SM, Rosche O, Altermann M (2019) Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ Int 126:76–88

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Kabata-Pendias A (2011) Trace Elements in Soils and Plants. CRC Press, Boca Raton

    Google Scholar 

  44. 44.

    Ul-Hasan S, Bowers RM, Figueroa-Montiel A, Licea-Navarro AF, Beman JM, Woyke T, Nobile CJ (2019) Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS One 14:e0212355

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Plant Ecol 69:57–58

    Article  Google Scholar 

  47. 47.

    Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2019) Package ‘vegan’: Community Ecology Package. R-Package v2.5-3

  48. 48.

    R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  49. 49.

    Yu Z, He Z, Tao X, Zhou J, Yang Y, Zhao M, Zhang X, Zheng Z, Yuan T, Liu P, Chen Y, Nolan V, Li X (2016) The shifts of sediment microbial community phylogenetic and functional structures during chromium (VI) reduction. Ecotoxicology 25:1759–1770

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    ter Braak CJF (1989) CANOCO-an extension of DECORANA to analyze species-environment relationships. Hydrobiologia 184:169–170

    Article  Google Scholar 

  51. 51.

    Revelle W (2018) Psych: procedures for psychological, psychometric, and personality research, v1.7.8

  52. 52.

    Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Bastia M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media: 361-362

  54. 54.

    Jie Y, Teng Y, Wu T, Chen H, Wang G, Song L, Yue W, Zuo R, Zhai Y (2016) Current status and associated human health risk of vanadium in soil in China. Chemosphere 171:635–643

    Google Scholar 

  55. 55.

    Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Hudson-Edwards KA, Byrne P, Bird G, Brewer PA, Burke IT, Jamieson HE, Macklin MG, Williams RD (2019) Origin and fate of vanadium in the Hazeltine Creek Catchment following the 2014 Mount Polley Mine Tailings spill in British Columbia, Canada. Environ Sci Technol 53:4088–4098

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Nedrich SM, Chappaz A, Hudson ML, Brown SS, Burton Jr GA (2018) Biogeochemical controls on the speciation and aquatic toxicity of vanadium and other metals in sediments from a river reservoir. Sci Total Environ 612:313–320

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Yang J, Tang Y, Li T, Yang K, Li J, Gao H (2010) Soil biogeochemistry and resources situation of vanadium in China. Chin J Soil Sci 41:1511–1517

    CAS  Google Scholar 

  59. 59.

    Zhang BG, Feng CP, Ni JR, Zhang J, Huang WL (2012) Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J Power Sources 204:34–39

    Article  CAS  Google Scholar 

  60. 60.

    Li HY, Fang HX, Wang K, Zhou W, Yang Z, Yan XM, Ge WS, Li QW, Xie B (2015) Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting-water leaching. Hydrometallurgy 156:124–135

    Article  CAS  Google Scholar 

  61. 61.

    Liu ZS, Zhang YM, Dai ZL, Huang J, Liu C (2020) Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process. Front Chem Sci Eng 14:902–912

    Article  CAS  Google Scholar 

  62. 62.

    Cavaco MA, St Louis VL, Engel K, St Pierre KA, Schiff SL, Stibal M, Neufeld JD (2019) Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiol Ecol 95:fiz161

  63. 63.

    Sun WM, Xiao TF, Sun M, Dong YR, Ning ZP, Xiao EZ, Tang S, Li JW (2015) Diversity of the sediment microbial community in the Aha Watershed (Southwest China) in response to acid mine drainage pollution gradients. Appl Environ Microbiol 81:4874–4884

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, FHasmain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS ONE 7:e40059

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Gough HL, Stahl DA (2011) Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. ISME J 5:543–558

    PubMed  Article  Google Scholar 

  66. 66.

    Chen JH, He F, Zhang XH, Sun X, Zheng JF, Zheng JW (2014) Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol 87:164–181

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Xie Y, Fan JB, Zhu WX, Amombo E, Lou YH, Chen L, Fu JM (2016) Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation. Front Plant Sci 7

  68. 68.

    Chen Y, Jiang YM, Huang HY, Mou LC, Ru JL, Zhao JH, Xiao S (2018) Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci Total Environ 637:1400–1412

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Jroundi F, Descostes M, Povedano-Priego C, Sanchez-Castro I, Suvannagan V, Grizard P, Merroun ML (2020) Profiling native aquifer bacteria in a uranium roll-front deposit and their role in biogeochemical cycle dynamics: insights regarding in situ recovery mining. Sci Total Environ 721:137758

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Tipayno SC, Truu J, Samaddar S, Truu M, Preem JK, Oopkaup K, Espenberg M, Chatterjee P, Kang Y, Kim K, Sa T (2018) The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecol Evol 8:6157–6168

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Puopolo G, Tomada S, Sonego P, Moretto M, Engelen K, Perazzolli M, Pertot I (2016) The Lysobacter capsici AZ78 genome has a gene pool enabling it to Interact successfully with phytopathogenic microorganisms and environmental factors. Front Microbiol 7

  72. 72.

    Nguyen TM, Kim J (2017) Limnobacterhumi sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from humus soil, and emended description of the genus Limnobacter. J Microbiol 55:508–513

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Zhang J, Yang G, Zhou S, Wang Y, Yuan Y, Zhuang L (2013) Fontibacter ferrireducens sp. nov., an Fe (III)-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63:925–929

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Shi XY, Zhou GT, Liao SJ, Shan SP, Wang GJ, Guo ZH (2018) Immobilization of cadmium by immobilized Alishewanella sp WH16-1 with alginate-lotus seed pods in pot experiments of Cd-contaminated paddy soil. J Hazard Mater 357:431–439

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Xia X, Li J, Liao S, Zhou G, Wang H, Li L, Xu B, Wang G (2016) Draft genomic sequence of a chromate- and sulfate-reducing Alishewanella strain with the ability to bioremediate Cr and Cd contamination. Stand Genomic Sci 11:48

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Wang YH, Li P, Jiang Z, Sinkkonen A, Wang S, Tu J, Wei DZ, Dong HL, Wang YX (2016) Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia. Front Microbiol 7:1917

  77. 77.

    Chen D, Xiao ZX, Wang HY, Yang K (2018) Toxic effects of vanadium (V) on a combined autotrophic denitrification system using sulfur and hydrogen as electron donors. Bioresour Technol 264:319–326

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43:135–142

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Briand L, Thomas H, Donati E (1996) Vanadium(V) reduction in Thiobacillus thiooxidans cultures on elemental sulfur. Biotechnol Lett 18:505–508

    Article  CAS  Google Scholar 

  81. 81.

    Jorgensen BB (1990) The sulfur cycle of freshwater sediments: role of thiosulfate. Limnol Oceanogr 35:1329–1342

    Article  Google Scholar 

  82. 82.

    Chen F, Yang Y, Zhang D, Zhang L (2006) Heavy metals associated with reduced sulfur in sediments from different deposition environments in the Pearl River estuary, China. Environ Geochem Health 28:265–272

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Barberan A, Bates ST, Casamayor EO, Fierer N (2014) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 8:952–952

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  84. 84.

    Prosser JI, Head IM, Stein LY (2014) The Family Nitrosomonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria. Springer, New York, pp 901–918

    Chapter  Google Scholar 

  85. 85.

    Geesink P, Wegner CE, Probst AJ, Herrmann M, Dam HT, Kaster AK, Kusel K (2020) Genome-inferred spatio-temporal resolution of an uncultivated Roizmanbacterium reveals its ecological preferences in groundwater. Environ Microbiol 22:726–737

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Arshad A, Dalcin MP, Frank J, Jetten MSM, Opden Camp HJM, Welte CU (2017) Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio. Environ Microbiol 19:4965–4977

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Hanada S, Sekiguchi Y (2006) The order Haloanaerobiales. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes A Handbook on the Biology of Bacteria Springer. Heidelberg, Berlin, pp 677–681

    Google Scholar 

  88. 88.

    Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitken MD (2013) Polycyclovorans algicola gen. nov., sp nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol 79:205–214

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Farag IF, Youssef NH, Elshahed MS (2017) Global distribution patterns and pangenomic diversity of the Candidate Phylum "Latescibacteria" (WS3). Appl Environ Microbiol 83

  90. 90.

    Shi J, Zhang B, Cheng Y, Peng K (2020) Microbial vanadate reduction coupled to co-metabolic phenanthrene biodegradation in groundwater. Water Res 186:116354

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Sen Yan (China University of Geosciences (Wuhan)) and Hongqin Tang (Panzhihua Office of the Hydrological Bureau of Sichuan Province) for the technical support.

Availability of Data and Material

National Center for Biotechnology Information (NCBI) GeneBank under the SRA accession numbers SAMN15650059-SAMN15650084 as well as the National Omics Data Encyclopedia (NODE) under the Project ID OEP001390.

Funding

This study was funded by the National Natural Science Foundation of China under the contracts 92051111, 41877321, and 91851211, and the Fundamental Research Funds for the Chinese Central Government via China University of Geosciences (Wuhan). Sampling was partially supported by China Three Gorges Projects Development Co. Ltd (JG/18011B).

Author information

Affiliations

Authors

Contributions

Y. H., D. H., and S. L. contributed to material preparation, sampling, geochemical analyses, and bioinformatic analyses. M. W., H. F., and X. T. organized the sampling. Y. D. designed the study and supervised the data analyses. The first draft of the manuscript was written by Y. D., Y, H., and L. S. R. S., W. S., and Y. L. commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Yiran Dong.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 2236 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Huang, D., Li, S. et al. Profiling of Microbial Communities in the Sediments of Jinsha River Watershed Exposed to Different Levels of Impacts by the Vanadium Industry, Panzhihua, China. Microb Ecol 82, 623–637 (2021). https://doi.org/10.1007/s00248-021-01708-9

Download citation

Keywords

  • Microbial communities
  • Watershed
  • Vanadium
  • Microbe-environment interactions
  • Co-occurrence network
  • Keystone taxa