Nitrogen Availability and Microbial Communities of Canopy Soils in a Large Cercidiphyllum japonicum Tree of a Cool-Temperate Old Growth Forest

Abstract

Canopy soils on large trees are important for supporting the lives of many canopy plants, and thereby increasing regional biodiversity. However, because of the less accessibility to canopy soils, there is insufficient knowledge on how canopy soils produce available nitrogen (N) for canopy plants through the activity of canopy soil microbes. Canopy soils usually have different soil properties from ground soils, so we hypothesized that canopy soils would have unique microbial communities compared to ground soils, but still provide available N for canopy plants. Here, we compared soil N availability, including net N mineralization and nitrification rate, and microbial communities between canopy soils (organic soils) collected at various heights of a large Cercidiphyllum japonicum tree and ground soils (organic and mineral soils) in a cool-temperate old-growth forest of Japan. The canopy soils had significantly different N availability (mass-based higher but volume-based lower) and microbial communities from the ground mineral soils. Among organic soils, the height of the soil had an impact on the microbial communities but not on the N availability, which agreed with our hypothesis. Despite the decrease in fungal abundance in the higher soils, the increase in certain components of the cellulose-decomposing fungi and oligotrophic bacteria may contribute to the available N production. Also, the abundance of ammonia-oxidizers did not change with the height, which would be important for the nitrification rate. Our study implied canopy soils could provide N to canopy plants partly through the functional redundancy within different microbial communities and constant population of ammonia-oxidizers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305–1306. https://doi.org/10.1126/science.1231070

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Woods CL, Cardelús CL, Dewalt SJ (2015) Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J Ecol 103:421–430. https://doi.org/10.1111/1365-2745.12357

    Article  Google Scholar 

  3. 3.

    Ellwood MDF, Foster WA (2004) Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429:549–551. https://doi.org/10.1038/nature02560

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Scheffers BR, Phillips BL, Shoo LP (2014) Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs. Glob Ecol Conserv 2:37–46. https://doi.org/10.1016/j.gecco.2014.06.004

    Article  Google Scholar 

  5. 5.

    Bohlman SA, Matelson TJ, Nadkarni NM (1995) Moisture and temperature patterns of canopy humus and forest floor soil of a montane. Published by: Association for Tropical Biology and Conservation Stable URL: https://www.jstor.org/stable/2388898 preserve and extend access to Biotropica. Biotropica 27:13–19. https://doi.org/10.2307/2388898

    Article  Google Scholar 

  6. 6.

    Enloe HA, Graham RC, Sillett SC (2006) Arboreal Histosols in old-growth redwood forest canopies, Northern California. Soil Sci Soc Am J 70:408–418. https://doi.org/10.2136/sssaj2004.0229

    CAS  Article  Google Scholar 

  7. 7.

    Binkley D, Hart SC (1989) The components of nitrogen availability assessments in forest soils. Adv Soil Sci 10:57–112

    CAS  Article  Google Scholar 

  8. 8.

    Moore JC, McCann K, Setälä H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857. https://doi.org/10.1890/0012-9658(2003)084[0846:TIBDPI]2.0.CO;2

    Article  Google Scholar 

  9. 9.

    Fraterrigo JM, Balser TC, Turner MG (2006) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87:570–579. https://doi.org/10.1890/05-0638

    Article  PubMed  Google Scholar 

  10. 10.

    Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529. https://doi.org/10.1146/annurev.micro.55.1.485

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Isobe K, Ohte N, Oda T, Murabayashi S, Wei W, Senoo K, Tokuchi N, Tateno R (2015) Microbial regulation of nitrogen dynamics along the hillslope of a natural forest. Front Environ Sci 2:1–8. https://doi.org/10.3389/fenvs.2014.00063

    Article  Google Scholar 

  12. 12.

    Nilsen AR, Teasdale SE, Guy PL, Summerfield TC, Orlovich DA (2020) Fungal diversity in canopy soil of silver beech, Nothofagus menziesii (Nothofagaceae). PLoS One 15:1–23. https://doi.org/10.1371/journal.pone.0227860

    CAS  Article  Google Scholar 

  13. 13.

    Rousk J, Nadkarni NM (2009) Growth measurements of saprotrophic fungi and bacteria reveal differences between canopy and forest floor soils. Soil Biol Biochem 41:862–865. https://doi.org/10.1016/j.soilbio.2009.02.008

    CAS  Article  Google Scholar 

  14. 14.

    Jensen KD, Beier C, Michelsen A, Emmett BA (2003) Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl Soil Ecol 24:165–176. https://doi.org/10.1016/S0929-1393(03)00091-X

    Article  Google Scholar 

  15. 15.

    Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25. https://doi.org/10.1016/j.soilbio.2014.03.021

    CAS  Article  Google Scholar 

  16. 16.

    Maillard F, Leduc V, Bach C, Reichard A, Fauchery L, Saint-André L, Zeller B, Buée M (2019) Soil microbial functions are affected by organic matter removal in temperate deciduous forest. Soil Biol Biochem 133:28–36. https://doi.org/10.1016/j.soilbio.2019.02.015

    CAS  Article  Google Scholar 

  17. 17.

    Cardelús CL, Mack MC, Woods C, DeMarco J, Treseder KK (2009) The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica. Plant Soil 318:47–61. https://doi.org/10.1007/s11104-008-9816-9

    CAS  Article  Google Scholar 

  18. 18.

    Nadkarni NM, Schaefer D, Matelson TJ, Solano R (2002) Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia (Jena) 46:24–33. https://doi.org/10.1078/0031-4056-00110

    Article  Google Scholar 

  19. 19.

    Pérez CA, Guevara R, Carmona MR, Armesto JJ (2005) Nitrogen mineralization in epiphytic soils of an old-growth Fitzroya cupressoides forest, southern Chile. Écoscience 12:210–215. https://doi.org/10.2980/i1195-6860-12-2-210.1

    Article  Google Scholar 

  20. 20.

    Sillett SC, Van Pelt R (2007) Trunk reiteration promotes epiphytes and water storage in an old-growth redwood forest canopy. Ecol Monogr 77:335–359. https://doi.org/10.1890/06-0994.1

    Article  Google Scholar 

  21. 21.

    Parker GG (1995) Structure and microclimate of forest canopies. In: Lowman MD, Nadkarnil NM (eds) Forest canopies. Academic Press, San Diego, pp 73–106

    Google Scholar 

  22. 22.

    Azuma AW, Komada N, Ogawa Y, Ishii H, Nakanishi A, Noguchi Y, Kanzaki M (2021) One large tree crown can be defined as a local hotspot for plant species diversity in a forest ecosystem: a case study in temperate old-growth forest. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-164292/v1

  23. 23.

    Chen J, Xiao W, Zheng C, Zhu B (2020) Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biol Biochem 142:107708. https://doi.org/10.1016/j.soilbio.2020.107708

    CAS  Article  Google Scholar 

  24. 24.

    Lipson DA, Schmidt SK (2004) Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl Environ Microbiol 70:2867–2879. https://doi.org/10.1128/AEM.70.5.2867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yuste JC, Fernandez-Gonzalez AJ, Fernandez-Lopez M et al (2014) Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biol Biochem 69:223–233. https://doi.org/10.1016/j.soilbio.2013.10.045

    CAS  Article  Google Scholar 

  26. 26.

    Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Soil biology & biochemistry network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198. https://doi.org/10.1016/j.soilbio.2016.03.017

    CAS  Article  Google Scholar 

  27. 27.

    Rousk J, Demoling LA, Bååth E (2009) Contrasting short-term antibiotic effects on respiration and bacterial growth compromises the validity of the selective respiratory inhibition technique to distinguish fungi and bacteria. Microb Ecol 58:75–85. https://doi.org/10.1007/s00248-008-9444-1

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Haimi J, Siira-pietikäinen A (2003) Activity and role of the enchytraeid worm Cognettia sphagnetorum (Vejd.) (Oligochaeta: Enchytraeidae) in organic and mineral forest soil. Pedobiologia (Jena) 47:303–310

    Article  Google Scholar 

  29. 29.

    Smaill SJ, Clinton PW, Greenfield LG (2008) Postharvest organic matter removal effects on FH layer and mineral soil characteristics in four New Zealand Pinus radiata plantations. For Ecol Manag 256:558–563. https://doi.org/10.1016/j.foreco.2008.05.001

    Article  Google Scholar 

  30. 30.

    Gautam MK, Sik K, Byeong L et al (2016) Early-stage changes in natural 13C and 15N abundance and nutrient dynamics during different litter decomposition. J Plant Res 129:463–476. https://doi.org/10.1007/s10265-016-0798-z

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Ros GH, Temminghoff EJM, Hoffland E (2011) Nitrogen mineralization: a review and meta-analysis of the predictive value of soil tests. Eur J Soil Sci 62:162–173. https://doi.org/10.1111/j.1365-2389.2010.01318.x

    CAS  Article  Google Scholar 

  32. 32.

    Postma-Blaauw MB, de Vries FT, de Goede RGM, Bloem J, Faber JH, Brussaard L (2005) Within-trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 142:428–439. https://doi.org/10.1007/s00442-004-1741-x

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Iwaoka C, Imada S, Taniguchi T, du S, Yamanaka N, Tateno R (2018) The impacts of soil fertility and salinity on soil nitrogen dynamics mediated by the soil microbial community beneath the halophytic shrub tamarisk. Microb Ecol 75:985–996. https://doi.org/10.1007/s00248-017-1090-z

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tatsumi C, Taniguchi T, Du S et al (2019) The steps in the soil nitrogen transformation process vary along an aridity gradient via changes in the microbial community. Biogeochemistry 144:15–29. https://doi.org/10.1007/s10533-019-00569-2

    CAS  Article  Google Scholar 

  35. 35.

    Tatsumi C, Taniguchi T, Du S et al (2020) Soil nitrogen cycling is determined by the competition between mycorrhiza and ammonia-oxidizing prokaryotes. Ecology. 101:e02963. https://doi.org/10.1002/ecy.2963

    Article  PubMed  Google Scholar 

  36. 36.

    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  37. 37.

    Wemheuer F, Taylor JA, Daniel R et al (2018) Tax4Fun2: a R-based tool for the rapid prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene marker gene sequences. bioRxiv:490037. https://doi.org/10.1101/490037

  38. 38.

    Saiya-Cork K, Sinsabaugh R, Zak D (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315. https://doi.org/10.1016/S0038-0717(02)00074-3

    CAS  Article  Google Scholar 

  39. 39.

    Isobe K, Oka H, Watanabe T, Tateno R, Urakawa R, Liang C, Senoo K, Shibata H (2018) High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest. Soil Biol Biochem 124:90–100. https://doi.org/10.1016/j.soilbio.2018.05.028

    CAS  Article  Google Scholar 

  40. 40.

    Semedo M, Song B, Sparrer T, Phillips RL (2018) Antibiotic effects on microbial communities responsible for denitrification and N2O production in grassland soils. Front Microbiol 9:1–16. https://doi.org/10.3389/fmicb.2018.02121

    Article  Google Scholar 

  41. 41.

    Berkelmann D, Schneider D, Engelhaupt M, Heinemann M, Christel S, Wijayanti M, Meryandini A, Daniel R (2018) How rainforest conversion to agricultural systems in Sumatra (Indonesia) affects active soil bacterial communities. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.02381

    Article  Google Scholar 

  42. 42.

    Imhoff JF, Rahn T, Künzel S, Neulinger SC (2018) Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.02679

    Article  Google Scholar 

  43. 43.

    Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S (2018) Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Natl Acad Sci 115:10392–10397. https://doi.org/10.1073/pnas.1716595115

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Hartmann M, Brunner I, Hagedorn F, Bardgett RD, Stierli B, Herzog C, Chen X, Zingg A, Graf-Pannatier E, Rigling A, Frey B (2017) A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 26:1190–1206. https://doi.org/10.1111/mec.13995

    Article  PubMed  Google Scholar 

  45. 45.

    Robinson D, Hodge A, Fitter A (2003) Constraints on the form and function of root systems. In: de Kroon H, Visser EJW (eds) Root ecology. Springer, Berlin, pp 1–31

    Google Scholar 

  46. 46.

    Bryla DR, Bouma TJ, Hartmond U, Eissenstat DM (2001) Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field. Plant Cell Environ 24:781–790. https://doi.org/10.1046/j.1365-3040.2001.00723.x

    Article  Google Scholar 

  47. 47.

    Cannon PF, Kirk PM (2007) Fungal families of the world. CABI, Cambridge

    Book  Google Scholar 

  48. 48.

    Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64. https://doi.org/10.1016/j.soilbio.2015.02.011

    CAS  Article  Google Scholar 

  49. 49.

    Xu M, Lu X, Xu Y, Zhong Z, Zhang W, Ren C, Han X, Yang G, Feng Y (2020) Dynamics of bacterial community in litter and soil along a chronosequence of Robinia pseudoacacia plantations. Sci Total Environ 703:135613. https://doi.org/10.1016/j.scitotenv.2019.135613

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM (2013) Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol 83:607–621. https://doi.org/10.1111/1574-6941.12018

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746. https://doi.org/10.1111/j.1574-6941.2012.01343.x

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J, Chong L (2013) Soil bacterial community structure in five tropical forests in Malaysia and one temperate forest in Japan revealed by pyrosequencing analyses of 16S rRNA gene sequence variation. Genes Genet Syst 88:93–103

    CAS  Article  Google Scholar 

  53. 53.

    Sterkenburg E, Bahr A, Brandström Durling M, Clemmensen KE, Lindahl BD (2015) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol 207:1145–1158. https://doi.org/10.1111/nph.13426

    Article  PubMed  Google Scholar 

  54. 54.

    Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822. https://doi.org/10.1038/nature05110

    CAS  Article  Google Scholar 

  56. 56.

    Rosling A, Cox F, Cruz-Martinez K et al (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879. https://doi.org/10.1126/science.1206958

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Kielak AM, Cretoiu MS, Semenov AV, Sørensen SJ, van Elsas JD (2013) Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Appl Environ Microbiol 79:263–272. https://doi.org/10.1128/AEM.02546-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Jacquiod S, Franqueville L, Cécillon S, M. Vogel T, Simonet P (2013) Soil bacterial community shifts after Chitin enrichment: an integrative metagenomic approach. PLoS One 8:1–13. https://doi.org/10.1371/journal.pone.0079699

    CAS  Article  Google Scholar 

  59. 59.

    Cretoiu MS, Korthals GW, Visser JHM, Van Elsas JD (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol 79:5291–5301. https://doi.org/10.1128/AEM.01361-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625. https://doi.org/10.1128/AEM.00136-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Abujabhah IS, Bound SA, Doyle R, Bowman JP (2016) Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl Soil Ecol 98:243–253. https://doi.org/10.1016/j.apsoil.2015.10.021

    Article  Google Scholar 

  63. 63.

    Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315. https://doi.org/10.1016/j.soilbio.2010.10.016

    CAS  Article  Google Scholar 

  64. 64.

    Yoshida T, Hijii N (2011) Microarthropod colonization of litter in arboreal and soil environments of a Japanese cedar (Cryptomeria japonica) plantation microarthropod colonization of litter in arboreal and soil environments of a Japanese cedar (Cryptomeria japonica) plantation. J For Res 6979:46–54. https://doi.org/10.1007/s10310-010-0205-x

    Article  Google Scholar 

  65. 65.

    Kumagai T, Kuraji K, Noguchi H et al (2001) Vertical profiles of environmental factors within tropical rainforest, Lambir Hills National Park, Sarawak, Malaysia. J For Res 6:257–264. https://doi.org/10.1007/BF02762466

    Article  Google Scholar 

  66. 66.

    Che R, Wang S, Wang Y, Xu Z, Wang W, Rui Y, Wang F, Hu J, Tao J, Cui X (2019) Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biol Biochem 139:107611. https://doi.org/10.1016/j.soilbio.2019.107611

    CAS  Article  Google Scholar 

  67. 67.

    Liu D, Keiblinger KM, Schindlbacher A, Wegner U, Sun H, Fuchs S, Lassek C, Riedel K, Zechmeister-Boltenstern S (2017) Microbial functionality as affected by experimental warming of a temperate mountain forest soil—a metaproteomics survey. Appl Soil Ecol 117–118:196–202. https://doi.org/10.1016/j.apsoil.2017.04.021

    Article  Google Scholar 

  68. 68.

    Ni Y, Yang T, Zhang K, Shen C, Chu H (2018) Fungal communities along a small-scale elevational gradient in an alpine tundra are determined by soil carbon nitrogen ratios. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.01815

    Article  Google Scholar 

  69. 69.

    Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762. https://doi.org/10.1038/ismej.2012.11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    da Rocha UN, Andreote FD, de Azevedo JL, van Elsas JD, van Overbeek LS (2010) Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere. J Soils Sediments 10:326–339. https://doi.org/10.1007/s11368-009-0160-3

    CAS  Article  Google Scholar 

  71. 71.

    Cederlund H, Wessén E, Enwall K, Jones CM, Juhanson J, Pell M, Philippot L, Hallin S (2014) Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl Soil Ecol 84:62–68. https://doi.org/10.1016/j.apsoil.2014.06.003

    Article  Google Scholar 

  72. 72.

    Dangerfield CR, Nadkarni NM, Brazelton WJ (2017) Canopy soil bacterial communities altered by severing host tree limbs. PeerJ 5:1–19. https://doi.org/10.7717/peerj.3773

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We greatly thank Dr. Akira Nakanishi, Mr. Keisuke Nishida, Ms. Yuiko Noguchi, Dr. Hiroaki Ishii, Dr. Mamoru Kanzaki, and members of the Field Science, Education and Research Center (FSERC) of Kyoto University for their substantial contribution to field survey and logistics. We also deeply appreciate Dr. Ryunosuke Tateno and Dr. Keisuke Koba for significant advices on research plan and support for the laboratory analysis, Dr. Keitaro Fukushima and Dr. Masae Ishihara for providing useful information of the study site, and Dr. Hiroaki Ishii for reviewing the early manuscript. Further, we thank Dr. Takeshi Taniguchi, Mr. Masataka Nakayama, and members of the Forest Resources and Society laboratory for cooperation of laboratory analysis. Part of this study was conducted using Cooperative Research Facilities (Isotope Ratio Mass Spectrometer) of the Center for Ecological Research, Kyoto University. This study was financially supported in part by Grant-in-Aid for JSPS Research Fellow (Grant No. 17J07686), Expo ’90 Foundation, and Kansai Organization for Nature Conservation.

Author information

Affiliations

Authors

Contributions

W.A.A. and C.T. conceived the study and acquired funding. All authors conducted field and laboratory studies. C.T. wrote the original draft and all authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Wakana A. Azuma.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary Information

ESM 1

(DOCX 267 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tatsumi, C., Azuma, W.A., Ogawa, Y. et al. Nitrogen Availability and Microbial Communities of Canopy Soils in a Large Cercidiphyllum japonicum Tree of a Cool-Temperate Old Growth Forest. Microb Ecol (2021). https://doi.org/10.1007/s00248-021-01707-w

Download citation

Keywords

  • Ammonia-oxidizer
  • Canopy humus
  • Fungi
  • Nitrification
  • Nitrogen availability
  • Organic soils
  • Prokaryote