Skip to main content

Association of Wolbachia with Gene Expression in Drosophila Testes

Abstract

Wolbachia is a genus of intracellular symbiotic bacteria that are widely distributed in arthropods and nematodes. These maternally inherited bacteria regulate host reproductive systems in various ways to facilitate their vertical transmission. Since the identification of Wolbachia in many insects, the relationship between Wolbachia and the host has attracted great interest. Numerous studies have indicated that Wolbachia modifies a variety of biological processes in the host. Previous studies in Drosophila melanogaster (D. melanogaster) have demonstrated that Wolbachia can affect spermatid differentiation, chromosome deposition, and sperm activity in the early stages of spermatogenesis, leading to sperm dysfunction. Here, we explored the putative effect of Wolbachia in sperm maturation using transcriptomic approaches to compare gene expression in Wolbachia-infected and Wolbachia-free D. melanogaster adult testes. Our findings show that Wolbachia affects many biological processes in D. melanogaster adult testes, and most of the differentially expressed genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia. In contrast, some genes that are putatively associated with cutin and wax biosynthesis and peroxisome pathways were downregulated. We did not find any differentially expressed genes that are predicted to be related to spermatogenesis in the datasets. This work provides additional information for understanding the Wolbachia-host intracellular relationships.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated and analyzed during the current study are available in the SRA database at NCBI, with the accession number of PRJNA639180.

Code Availability

Not applicable.

References

  1. 1.

    Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53(53):71–102

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Foster JM, Hoerauf A, Slatko BE, Taylor MJ, Kennedy MW, Harnett W (2013) The Wolbachia bacterial endosymbionts of filarial nematodes. Parasit Nematodes Mol Biol Biochem Immunol 60:308–336

    Article  Google Scholar 

  4. 4.

    Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8(2):e1002548

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322(5902):702

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Moriyama M, Nikoh N, Hosokawa T, Fukatsu T (2015) Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. Mbio 6(6):e01732-01715

    Article  CAS  Google Scholar 

  7. 7.

    Peng Y, Wang YF (2009) Infection of Wolbachia may improve the olfactory response of Drosophila. Chin Sci Bull 08:89–95

    Google Scholar 

  8. 8.

    Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, Frydman HM (2011) Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334(6058):990–992

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Maistrenko OM, Serga SV, Vaiserman AM, Kozeretska IA (2016) Longevity-modulating effects of symbiosis: insights from Drosophila-Wolbachia interaction. Biogerontology 17(5-6):785–803

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?--a statistical analysis of current data. FEMS Microbiol Lett 281(2):215–220

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Pietri JE, DeBruhl H, Sullivan W (2016) The rich somatic life of Wolbachia. Microbiologyopen 5(6):923–936

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Ikeya T, Broughton S, Alic N, Grandison R, Partridge L (2009) The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila. Proc Biol Sci 276(1674):3799–3807

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Grobler Y, Yun CY, Kahler DJ, Bergman CM, Lee H, Oliver B et al (2018) Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation. PLoS Pathog 14(11):e1007445

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    White PM, Serbus LR, Debec A, Codina A, Bray W, Guichet A et al (2017) Reliance of Wolbachia on high rates of host proteolysis revealed by a genome-wide RNAi screen of Drosophila cells. Genetics 205(4):1473–1488

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42:683–707

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Gutzwiller F, Carmo CR, Miller DE, Rice DW, Newton IL, Hawley RS et al (2015) Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 (Bethesda, Md) 5(12):2843–2856

    CAS  Article  Google Scholar 

  17. 17.

    He Z, Zheng Y, Yu WJ, Fang Y, Mao B, Wang YF (2019) How do Wolbachia modify the Drosophila ovary? New evidences support the “titration-restitution” model for the mechanisms of Wolbachia-induced CI. BMC Genomics 20(1):608

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM et al (2012) Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22(12):2467–2477

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Darby AC, Gill AC, Armstrong SD, Hartley CS, Xia D, Wastling JM et al (2014) Integrated transcriptomic and proteomic analysis of the global response of Wolbachia to doxycycline-induced stress. ISME J 8(4):925–937

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Bing XL, Lu YJ, Xia CB, Xia X, Hong XY (2020) Transcriptome of Tetranychus urticae embryos reveals insights into Wolbachia-induced cytoplasmic incompatibility. Insect Mol Biol 29(2):193–204

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Clark ME, Veneti Z, Bourtzis K, Karr TL (2003) Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech Dev 120(2):185–198

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R (2014) Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839(3):155–168

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Spradling A, Fuller MT, Braun RE, Yoshida S (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3(11):a002642

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    White-Cooper H (2004) Spermatogenesis: analysis of meiosis and morphogenesis. Methods Mol Biol (Clifton, NJ) 247:45–75

    Google Scholar 

  25. 25.

    Vedelek V, Bodai L, Grézal G, Kovács B, Boros IM, Laurinyecz B et al (2018) Analysis of Drosophila melanogaster testis transcriptome. BMC Genomics 19(1):697

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Zheng Y, Wang JL, Liu C, Wang CP, Wang YF (2011) Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila. BMC Genomics 12(1):595

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Xi Z, Gavotte L, Xie Y, Dobson SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9:1

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Newton ILG, Rice DW (2020) The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? J Bacteriol 202(4)

  29. 29.

    Lindsey ARI, Bhattacharya T, Newton ILG, Hardy RW (2018) Conflict in the intracellular lives of endosymbionts and viruses: a mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses 10(4):141

  30. 30.

    LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD et al (2017) Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543(7644):243–247

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Ashburner M, Golic K, Hawley R (1989) Drosophila: a laboratory handbook. Trends Genet 41(5638):535–536

    Google Scholar 

  32. 32.

    Pontier SM, Schweisguth F (2015) A Wolbachia-sensitive communication between male and female pupae controls gamete compatibility in Drosophila. Curr Biol 25(18):2339–2348

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Gendron CM, Kuo TH, Harvanek ZM, Chung BY, Yew JY, Dierick HA et al (2014) Drosophila life span and physiology are modulated by sexual perception and reward. Science 343(6170):544–548

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics (Oxford, England) 26(1):136–138

    Article  CAS  Google Scholar 

  36. 36.

    Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics (Oxford, England) 21(19):3787–3793

    CAS  Article  Google Scholar 

  37. 37.

    Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a journal of. Integr Biol 16(5):284–287

    CAS  Google Scholar 

  38. 38.

    Landmann F (2019) The Wolbachia endosymbionts. Microbiol Spectr 7(2)

  39. 39.

    Biwot JC, Zhang HB, Liu C, Qiao JX, Yu XQ, Wang YF (2020) Wolbachia-induced expression of Kenny gene in testes affects male fertility in Drosophila melanogaster. Insect Sci 27(5):869–882

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Zheng Y, Ren PP, Wang JL, Wang YF (2011) Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila. PLoS One 6(4):e19512

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Zheng Y, Shen W, Bi J, Chen MY, Wang RF, Ai H et al (2019) Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. J Insect Physiol 118:103938

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Yuan LL, Chen X, Zong Q, Zhao T, Wang JL, Zheng Y et al (2015) Quantitative proteomic analyses of molecular mechanisms associated with cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. J Proteome Res 14(9):3835–3847

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Clark ME, Bailey-Jourdain C, Ferree PM, England SJ, Sullivan W, Windsor DM et al (2008) Wolbachia modification of sperm does not always require residence within developing sperm. Heredity 101(5):420–428

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Voronin D, Schnall E, Grote A, Jawahar S, Ali W, Unnasch TR et al (2019) Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia. PLoS Pathog 15(9):e1008085

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Voronin D, Bachu S, Shlossman M, Unnasch TR, Ghedin E, Lustigman S (2016) Glucose and glycogen metabolism in Brugia malayi is associated with Wolbachia symbiont fitness. PLoS One 11(4):e0153812

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Caragata EP, Rancès E, O’Neill SL, McGraw EA (2014) Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb Ecol 67(1):205–218

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Brownlie JC, O’Neill SL (2005) Wolbachia genomes: insights into an intracellular lifestyle. Curr Biol 15(13):R507–R509

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2(3):E69

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N et al (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4):e121

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Ciechanover A (2017) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best practice & research. Clin Haematol 30(4):341–355

    Google Scholar 

  52. 52.

    Rong X, Zhang YK, Zhang KJ, Hong XY (2014) Identification of Wolbachia-responsive microRNAs in the two-spotted spider mite, Tetranychus urticae. BMC Genomics 15(1):1122

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Scheitz CJ, Guo Y, Early AM, Harshman LG, Clark AG (2013) Heritability and inter-population differences in lipid profiles of Drosophila melanogaster. PLoS One 8(8):e72726

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Eaton S (2008) Multiple roles for lipids in the Hedgehog signalling pathway. Nature reviews. Mol Cell Biol 9(6):437–445

    CAS  Google Scholar 

  55. 55.

    Caragata EP, Rances E, Hedges LM, Gofton AW, Johnson KN, O’Neill SL et al (2013) Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 9(6):e1003459

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A 99(5):2918–2923

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Wong ZS, Hedges LM, Brownlie JC, Johnson KN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS One 6(9):e25430

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Zhang YK, Ding XL, Rong X, Hong XY (2015) How do hosts react to endosymbionts? A new insight into the molecular mechanisms underlying the Wolbachia-host association. Insect Mol Biol 24(1):1–12

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Zug R, Hammerstein P (2015) Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 6:1201

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Rainey SM, Martinez J, McFarlane M, Juneja P, Sarkies P, Lulla A et al (2016) Wolbachia blocks viral genome replication early in infection without a transcriptional response by the endosymbiont or host small RNA pathways. PLoS Pathog 12(4):e1005536

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Lee JH, Cho KS, Lee J, Yoo J, Lee J, Chung J (2001) Diptericin-like protein: an immune response gene regulated by the anti-bacterial gene induction pathway in Drosophila. Gene 271(2):233–238

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Yang WY, Wen SY, Huang YD, Ye MQ, Deng XJ, Han D et al (2006) Functional divergence of six isoforms of antifungal peptide Drosomycin in Drosophila melanogaster. Gene 379:26–32

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Vollmer J, Schiefer A, Schneider T, Jülicher K, Johnston KL, Taylor MJ et al (2013) Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol 303(3):140–149

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Wilmes M, Meier K, Schiefer A, Josten M, Otten CF, Klöckner A et al (2017) AmiD Is a novel peptidoglycan amidase in Wolbachia endosymbionts of Drosophila melanogaster. Front Cell Infect Microbiol 7:353

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Royet J, Gupta D, Dziarski R (2011) Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nature reviews. Immunology 11(12):837–851

    CAS  PubMed  Google Scholar 

  66. 66.

    Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS et al (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 109(1):E23–E31

    PubMed  Article  Google Scholar 

  67. 67.

    Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature reviews. Microbiology 2(10):820–832

    CAS  PubMed  Google Scholar 

  68. 68.

    Molloy JC, Sinkins SP (2015) Wolbachia do not induce reactive oxygen species-dependent immune pathway activation in Aedes albopictus. Viruses 7(8):4624–4639

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Haoyuan Hu for donating fruit fly.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. of 31830084, 31970440, and 31672336), and also supported by the construction funds for the “Double First-Class” initiative for Nankai University (Nos. 96172158, 96173250, and 91822294).

Author information

Affiliations

Authors

Contributions

Jinhua Xiao and Dawei Huang conceived the study. Weihao Dou analyzed the data, performed QPCR verification, and wrote the paper. Yunheng Miao provided valuable suggestions on the revision of the paper and the use of some software. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Jinhua Xiao or Dawei Huang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The funders had no role in study design, data analysis, and manuscript drafting.

Supplementary Information

ESM 1

(XLSX 11 kb)

ESM 2

(XLSX 55 kb)

ESM 3

(XLSX 38 kb)

ESM 4

(XLSX 13 kb)

ESM 5

(XLSX 9 kb)

ESM 6

(XLSX 190 kb)

ESM 7

(ZIP 660 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dou, W., Miao, Y., Xiao, J. et al. Association of Wolbachia with Gene Expression in Drosophila Testes. Microb Ecol 82, 805–817 (2021). https://doi.org/10.1007/s00248-021-01703-0

Download citation

Keywords

  • Wolbachia
  • Drosophila melanogaster
  • Transcriptomic
  • Intracellular relationship
  • Spermatogenesis