Skip to main content

Recovery Capacity of Subaerial Biofilms Grown on Granite Buildings Subjected to Simulated Drought in a Climate Change Context


Variations in environmental conditions in the context of climate change are expected to affect biofilm-associated organisms on granite heritage buildings. The number and duration of drought periods should be considered, as these factors will affect the availability of water for the microorganisms. In this study, mature biofilms were exposed to various drying-rewetting cycles, and the effects of water stress on the SAB and their resilience were evaluated in terms of the variation in microbial composition, extracellular polymeric substance production, and photosynthetic efficiency. The structure of the biofilm changed after exposure to drought, becoming more heterogeneous and with an increase in the carbohydrate to protein ratio, especially after the second day of total drought. YMAX and YEF parameters proved to be the most informative, showing that the photosynthetic efficiency and recovery capacity were inversely related to the duration of the drought period. Furthermore, cyanobacteria resisted drought better than algae, giving rise to a decrease in the algae to cyanobacteria ratio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Leissner J, Kilian R, Kotova L, Jacob D, Mikolajewicz U, Broström T, Ashley-Smith J, Schellen HL, Martens M, van Schijndel J, Antretter F, Winkler M, Bertolin C, Camuffo D, Simeunovic G, Vyhlídal T (2015) Climate for culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Herit Sci 3:1–15.

    Article  Google Scholar 

  2. 2.

    UNESCO (2007) Case studies of climate change and world heritage

  3. 3.

    Joh G, Lee J (2012) Cyanobacterial biofilms on sedimentation basins in a water treatment plant in South Korea. J. Appl. Phycol. 24:285–293.

    CAS  Article  Google Scholar 

  4. 4.

    Witt V, Wild C, Uthicke S (2012) Interactive climate change and runoff effects alter O2 fluxes and bacterial community composition of coastal biofilms from the Great Barrier Reef. Aquat. Microb. Ecol. 66:117–131.

    Article  Google Scholar 

  5. 5.

    Gorbushina AA (2007) Life on the rocks. Environ. Microbiol. 9:1613–1631.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Viles HA, Cutler NA (2012) Global environmental change and the biology of heritage structures. Glob. Chang. Biol. 18:2406–2418.

    Article  Google Scholar 

  7. 7.

    Sabbioni C, Cassar M, Brimblecombe P, Lefevre RA (2009) Vulnerability of cultural heritage to climate change. Pollut Atmos 157–169

  8. 8.

    Gómez-Bolea A, Llop E, Ariño X, Saiz-Jimenez C, Bonazza A, Messina P, Sabbioni C (2012) Mapping the impact of climate change on biomass accumulation on stone. J. Cult. Herit. 13:254–258.

    Article  Google Scholar 

  9. 9.

    Gladis F, Schumann R (2011) Influence of material properties and photocatalysis on phototrophic growth in multi-year roof weathering. Int. Biodeterior. Biodegrad. 65:36–44.

    CAS  Article  Google Scholar 

  10. 10.

    Gladis-Schmacka F, Glatzel S, Karsten U, Böttcher H, Schumann R (2014) Influence of local climate and climate change on aeroterrestrial phototrophic biofilms. Biofouling 30:401–414.

    Article  PubMed  Google Scholar 

  11. 11.

    Quagliarini E, Gianangeli A, D’Orazio M et al (2019) Effect of temperature and relative humidity on algae biofouling on different fired brick surfaces. Constr. Build. Mater. 199:396–405.

    Article  Google Scholar 

  12. 12.

    Barthès A, Ten-Hage L, Lamy A et al (2015) Resilience of aggregated microbial communities subjected to drought—small-scale studies. Microb. Ecol. 70:9–20.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Prieto B, Vázquez-Nion D, Fuentes E, Durán-Román AG (2020) Response of subaerial biofilms growing on stone-built cultural heritage to changing water regime and CO2 conditions. Int. Biodeterior. Biodegrad. 148:104882.

    CAS  Article  Google Scholar 

  14. 14.

    Ortega-Calvo JJ, Hernandez-Marine M, Saiz-Jimenez C (1992) Experimental strategies for investigating algal deterioration of stone. In: Proceedings of the 7th International Congress on Deterioration and Conservation of Stone: held in Lisbon, Portugal, 15-18 June 1992

  15. 15.

    Ortega-Morales BO, Narváez-Zapata JA, Schmalenberger A, Sosa-López A, Tebbe CC (2004) Biofilms fouling ancient limestone Mayan monuments in Uxmal, Mexico: a cultivation-independent analysis. Biofilms 1:79–90.

    Article  Google Scholar 

  16. 16.

    Ramirez M, Hernandez-Marine M, Novelo E, Roldan M (2010) Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Biofouling., 26, 399, 409

  17. 17.

    Cutler NA, Viles HA, Ahmad S, McCabe S, Smith BJ (2013) Algal “greening” and the conservation of stone heritage structures. Sci. Total Environ. 442:152–164.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Häubner N, Schumann R, Karsten U (2006) Aeroterrestrial microalgae growing in biofilms on facades-response to temperature and water stress. Microb. Ecol. 51:285–293.

    Article  PubMed  Google Scholar 

  19. 19.

    Karsten U, Holzinger A (2012) Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high Alpine soil crust. Microb. Ecol. 63:51–63.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Vázquez-Nion D, Rodríguez-Castro J, López-Rodríguez MC, Fernández-Silva I, Prieto B (2016) Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures. Biofouling 32:657–669.

    Article  PubMed  Google Scholar 

  21. 21.

    Serrano-Notivoli R, de Luis M, Beguería S (2017) An R package for daily precipitation climate series reconstruction. Environ. Model. Softw. 89:190–195.

    Article  Google Scholar 

  22. 22.

    Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica. 40:13–29.

    Article  Google Scholar 

  23. 23.

    CIE (1978) Commission Internationale d’Eclairage. Recommendations on Uniform Colour Spaces, Colour Difference Equations, Psychometrice Colour Terms. J. Oral Rehabil

  24. 24.

    Timoner X, Acuña V, Von Schiller D, Sabater S (2012) Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshw. Biol. 57:1565–1578.

    CAS  Article  Google Scholar 

  25. 25.

    Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 33:9–30.

    Article  PubMed  Google Scholar 

  26. 26.

    Muñoz I, Abril M, Casas-Ruiz JP, Casellas M, Gómez-Gener L, Marcé R, Menéndez M, Obrador B, Sabater S, von Schiller D, Acuña V (2018) Does the severity of non-flow periods influence ecosystem structure and function of temporary streams? A mesocosm study. Freshw. Biol. 63:613–625.

    CAS  Article  Google Scholar 

  27. 27.

    Unger S, Máguas C, Pereira JS, David TS, Werner C (2010) The influence of precipitation pulses on soil respiration-assessing the “Birch effect” by stable carbon isotopes. Soil Biol. Biochem. 42:1800–1810.

    CAS  Article  Google Scholar 

  28. 28.

    Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394.

    Article  PubMed  Google Scholar 

  29. 29.

    Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences. 9:2459–2483.

    CAS  Article  Google Scholar 

  30. 30.

    Meisner A, Rousk J, Bååth E (2015) Prolonged drought changes the bacterial growth response to rewetting. Soil Biol. Biochem. 88:314–322.

    CAS  Article  Google Scholar 

  31. 31.

    Romero F, Sabater S, Timoner X, Acuña V (2018) Multistressor effects on river biofilms under global change conditions. Sci. Total Environ. 627:1–10.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Suggett DJ, Borowitzka MA (2010) Chlorophyll a fluorescence in aquatic sciences: methods and applications, Developments in Applied Phycology.

  33. 33.

    Zlatev Z (2009) Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnol. Biotechnol. Equip. 23:438–441.

    Article  Google Scholar 

  34. 34.

    Singh H, Anurag K, Apte SK (2013) High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities. Photosynth Res.

  35. 35.

    Rajeev L, Da Rocha UN, Klitgord N et al (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Chang WS, Van De Mortel M, Nielsen L, et al (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. In: Journal of Bacteriology.

  37. 37.

    Wingender J, Neu TR, Flemming H-C (1999) Microbial extracellular polymeric substances: characterization, structure, and function.

  38. 38.

    Flemming HC, Wingender J (2010) The biofilm matrix. Nat. Rev. Microbiol. 8:623–633.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Prieto B, Rivas T, Silva B (2002) Rapid quantification of phototrophic microorganisms and their physiological state through their colour. Biofouling. 18:229–236.

    Article  Google Scholar 

  40. 40.

    Prieto B, Sanmartín P, Aira N, Silva B (2010) Color of cyanobacteria: some methodological aspects. Appl. Opt. 49:2022–2029.

    CAS  Article  PubMed  Google Scholar 

Download references


This study was financed through the Project CGL2016-79778-R from the Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional, European Union (AEI/FEDER, UE). E. Fuentes is financially supported by a PhD Fellowship-Contract from Ministerio de Ciencia e Innovación (MICINN-FPI) (BES-2017-079927).

Author information



Corresponding author

Correspondence to Elsa Fuentes.

Ethics declarations

Ethics Approval and Consent to Participate

All authors assure that this is an original work, which has not been previously published elsewhere. All authors have been personally and actively involved in the work.

Consent for Publication

All authors approve for the submission and publication.

Conflict of Interest

The authors declare no conflicts of interest.

Additional information


• The deteriorating activity of the colonizing organisms of Cultural Heritage will be affected by environmental changes related to climate change.

• The effect of water restriction on biofilm performance depends on the duration of drought.

• In the tested laboratory conditions, biofilms did not show recovery capacity after 2 days of total drought.

• Biofilms developed on granite seems to have low resilience to reduction in water availability.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuentes, E., Prieto, B. Recovery Capacity of Subaerial Biofilms Grown on Granite Buildings Subjected to Simulated Drought in a Climate Change Context. Microb Ecol 82, 761–769 (2021).

Download citation


  • Climate change
  • Granite-built heritage
  • Water availability
  • Photosynthetic performance
  • SABs