Skip to main content

Transgenerational Effects on the Coral Pocillopora damicornis Microbiome Under Ocean Acidification

Abstract

Reef-building corals are inhabited by functionally diverse microorganisms which play important roles in coral health and persistence in the Anthropocene. However, our understanding of the complex associations within coral holobionts is largely limited, particularly transgenerational exposure to environmental stress, like ocean acidification. Here we investigated the microbiome development of an ecologically important coral Pocillopora damicornis following transgenerational exposure to moderate and high pCO2 (partial pressure of CO2) levels, using amplicon sequencing and analysis. Our results showed that the Symbiodiniaceae community structures in adult and juvenile had similar patterns, all of which were dominated by Durusdinium spp., previously known as clade D. Conversely, prokaryotic communities varied between adults and juveniles, possibly driven by the effect of host development. Surprisingly, there were no significant changes in both Symbiodiniaceae and prokaryotic communities with different pCO2 treatments, which was independent of the life history stage. This study shows that ocean acidification has no significant effect on P. damicornis microbiome, and warrants further research to test whether transgenerational acclimation exists in coral holobiont to projected future climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226. https://doi.org/10.1371/journal.pbio.1002226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. 2.

    McFall-Ngai MJ (2014) The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol 68(68):177–194. https://doi.org/10.1146/annurev-micro-091313-103654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740. https://doi.org/10.1038/nrmicro1992

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340. https://doi.org/10.1146/annurev-micro-102215-095440

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Epstein HE, Smith HA, Torda G, van Oppen MJH (2019) Microbiome engineering: enhancing climate resilience in corals. Front Ecol Environ 17:100–108. https://doi.org/10.1002/fee.2001

    Article  Google Scholar 

  6. 6.

    Suggett DJ, Warner ME, Leggat W (2017) Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol Evol 32:735–745. https://doi.org/10.1016/j.tree.2017.07.013

    Article  PubMed  Google Scholar 

  7. 7.

    Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230. https://doi.org/10.1038/nrmicro2262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348. https://doi.org/10.1146/annurev-marine-121211-172241

    Article  Google Scholar 

  9. 9.

    Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896. https://doi.org/10.1111/gcb.12179

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    O’Brien PA, Morrow KM, Willis BL, Bourne DG (2016) Implications of ocean acidification for marine microorganisms from the free-living to the host-associated. Front Mar Sci 3:47. https://doi.org/10.3389/Fmars.2016.00047

    Article  Google Scholar 

  11. 11.

    Webster NS, Negri AP, Flores F, Humphrey C, Soo R, Botte ES, Vogel N, Uthicke S (2013) Near-future ocean acidification causes differences in microbial associations within diverse coral reef taxa. Environ Microbiol Rep 5:243–251. https://doi.org/10.1111/1758-2229.12006

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719. https://doi.org/10.1111/j.1462-2920.2007.01383.x

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 5:51–60. https://doi.org/10.1038/ismej.2010.102

    Article  PubMed  Google Scholar 

  14. 14.

    Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J 9:894–908. https://doi.org/10.1038/ismej.2014.188

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Marcelino VR, Morrow KM, van Oppen MJH, Bourne DG, Verbruggen H (2017) Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Mol Ecol 26:5344–5357. https://doi.org/10.1111/mec.14268

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Zhou G, Cai L, Yuan T, Tian R, Tong H, Zhang W, Jiang L, Guo M, Liu S, Qian PY, Huang H (2017) Microbiome dynamics in early life stages of the scleractinian coral Acropora gemmifera in response to elevated pCO2. Environ Microbiol 19:3342–3352. https://doi.org/10.1111/1462-2920.13840

  17. 17.

    O’Brien PA, Smith HA, Fallon S, Fabricius K, Willis BL, Morrow KM, Bourne DG (2018) Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp. Front Microbiol 9:2621. https://doi.org/10.3389/fmicb.2018.02621

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhou G, Yuan T, Cai L, Zhang W, Tian R, Tong H, Jiang L, Yuan X, Liu S, Qian P, Huang H (2016) Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification. Sci Rep 6:35971. https://doi.org/10.1038/srep35971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E (2012) Changes in coral microbial communities in response to a natural pH gradient. ISME J 6:1775–1785. https://doi.org/10.1038/ismej.2012.19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Noonan SH, Fabricius KE, Humphrey C (2013) Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS One 8:e63985. https://doi.org/10.1371/journal.pone.0063985

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Baghdasarian G, Osberg A, Mihora D, Putnam H, Gates RD, Edmunds PJ (2017) Effects of temperature and pCO2 on population regulation of Symbiodinium spp. in a tropical reef coral. Biol Bull 232:123–139. https://doi.org/10.1086/692718

    Article  PubMed  Google Scholar 

  22. 22.

    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580.e6. https://doi.org/10.1016/j.cub.2018.07.008

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    McDevitt-Irwin JM, Baum JK, Garren M, Thurber RLV (2017) Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci 4:262. https://doi.org/10.3389/Fmars.2017.00262

  24. 24.

    Donelson JM, Salinas S, Munday PL, Shama LNS (2018) Transgenerational plasticity and climate change experiments: where do we go from here? Glob Chang Biol 24:13–34. https://doi.org/10.1111/gcb.13903

    Article  PubMed  Google Scholar 

  25. 25.

    Donelan SC, Hellmann JK, Bell AM, Luttbeg B, Orrock JL, Sheriff MJ, Sih A (2020) Transgenerational plasticity in human-altered environments. Trends Ecol Evol 35:115–124. https://doi.org/10.1016/j.tree.2019.09.003

    Article  PubMed  Google Scholar 

  26. 26.

    Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TB (2014) Evolution in an acidifying ocean. Trends Ecol Evol 29:117–125. https://doi.org/10.1016/j.tree.2013.11.001

    Article  PubMed  Google Scholar 

  27. 27.

    Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol 218:2365–2372. https://doi.org/10.1242/jeb.123018

    Article  PubMed  Google Scholar 

  28. 28.

    Quigley KM, Warner PA, Bay LK, Willis BL (2018) Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity 121:524–536. https://doi.org/10.1038/s41437-018-0059-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Quigley KM, Willis BL, Bay LK (2016) Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. R Soc Open Sci 3:160471. https://doi.org/10.1098/rsos.160471

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Quigley KM, Willis BL, Kenkel CD (2019) Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata. Sci Rep 9:13328. https://doi.org/10.1038/s41598-019-50045-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Webster NS, Reusch TBH (2017) Microbial contributions to the persistence of coral reefs. ISME J 11:2167–2174. https://doi.org/10.1038/ismej.2017.66

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, Aurelle D, Mitta G, Toulza E (2018) Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. Microbiome 6:39. https://doi.org/10.1186/s40168-018-0423-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Epstein HE, Torda G, Munday PL, van Oppen MJH (2019) Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J 13:1635–1638. https://doi.org/10.1038/s41396-019-0358-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    van Oppen MJH, Bongaerts P, Frade P, Peplow Lesa M, Boyd SE, Nim HT, Bay LK (2018) Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol Ecol 27:2956–2971. https://doi.org/10.1111/mec.14763

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups, I, II and III to the fifth assessment report of the intergovernmental panel on climate change, eds core writing team, R. K. Pachauri, and L. A. Meyer. IPCC, Geneva

  36. 36.

    Cai L, Ye L, Tong AHY, Lok S, Zhang T (2013) Biased diversity metrics revealed by bacterial 16s pyrotags derived from different primer sets. PLoS One 8. https://doi.org/10.1371/journal.pone.0053649

  37. 37.

    LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  CAS  Google Scholar 

  38. 38.

    Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  Google Scholar 

  41. 41.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. https://doi.org/10.1093/nar/gkm864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Tong H, Cai L, Zhou G, Zhang W, Huang H, Qian PY (2020) Correlations between prokaryotic microbes and stress-resistant algae in different corals subjected to environmental stress in Hong Kong. Front Microbiol 11:686. https://doi.org/10.3389/fmicb.2020.00686

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: community ecology package. R package version 2.5–6. https://CRANR-projectorg/package=vegan

  47. 47.

    Damjanovic K, Blackall LL, Menéndez P, van Oppen MJH (2019) Bacterial and algal symbiont dynamics in early recruits exposed to two adult coral species. Coral Reefs 39:189–202. https://doi.org/10.1007/s00338-019-01871-z

    Article  Google Scholar 

  48. 48.

    Quigley KM, Alvarez Roa C, Torda G, Bourne DG, Willis BL (2020) Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 9:e959. https://doi.org/10.1002/mbo3.959

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Lema KA, Bourne DG, Willis BL (2014) Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol Ecol 23:4682–4695. https://doi.org/10.1111/mec.12899

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Sharp KH, Distel D, Paul VJ (2012) Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J 6:790–801. https://doi.org/10.1038/ismej.2011.144

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Cai L, Tian RM, Zhou G, Tong H, Wong YH, Zhang W, Chui APY, Xie JY, Qiu JW, Ang PO, Liu S, Huang H, Qian PY (2018) Exploring coral microbiome assemblages in the South China Sea. Sci Rep 8:2428. https://doi.org/10.1038/s41598-018-20515-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Mansfield KM, Gilmore TD (2019) Innate immunity and cnidarian-Symbiodiniaceae mutualism. Dev Comp Immunol 90:199–209. https://doi.org/10.1016/j.dci.2018.09.020

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    van Oppen MJH, Blackall LL (2019) Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol 17:557–567. https://doi.org/10.1038/s41579-019-0223-4

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Damjanovic K, Menendez P, Blackall LL, van Oppen MJH (2020) Mixed-mode bacterial transmission in the common brooding coral Pocillopora acuta. Environ Microbiol 22:397–412. https://doi.org/10.1111/1462-2920.14856

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Grottoli AG, Dalcin Martins P, Wilkins MJ, Johnston MD, Warner ME, Cai WJ, Melman TF, Hoadley KD, Pettay DT, Levas S, Schoepf V (2018) Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS One 13:e0191156. https://doi.org/10.1371/journal.pone.0191156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Zhou GW, Huang H (2011) Low genetic diversity of symbiotic dinoflagellates (Symbiodinium) in scleractinian corals from tropical reefs in southern Hainan Island, China. J Syst Evol 49:598–605. https://doi.org/10.1111/j.1759-6831.2011.00161.x

    Article  Google Scholar 

  57. 57.

    Silverstein RN, Correa AMS, LaJeunesse TC, Baker AC (2011) Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar Ecol Prog Ser 422:63–75. https://doi.org/10.3354/meps08934

    Article  Google Scholar 

  58. 58.

    Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, van Oppen MJ (2016) Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J 10:2693–2701. https://doi.org/10.1038/ismej.2016.54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS One 9:e94297. https://doi.org/10.1371/journal.pone.0094297

  60. 60.

    Green EA, Davies SW, Matz MV, Medina M (2014) Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. PeerJ 2:e386. https://doi.org/10.7717/peerj.386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. 61.

    Silverstein RN, Correa AM, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B 279:2609–2618. https://doi.org/10.1098/rspb.2012.0055

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol 21:236–249. https://doi.org/10.1111/gcb.12706

    Article  PubMed  Google Scholar 

  63. 63.

    Bay LK, Doyle J, Logan M, Berkelmans R (2016) Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. R Soc Open Sci 3:160322. https://doi.org/10.1098/rsos.160322

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Lee MJ, Jeong HJ, Jang SH, Lee SY, Kang NS, Lee KH, Kim HS, Wham DC, LaJeunesse TC (2016) Most low-abundance “background” Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb Ecol 71:771–783. https://doi.org/10.1007/s00248-015-0724-2

    Article  PubMed  Google Scholar 

  65. 65.

    Abrego D, Vano MJ, Willis BL (2009) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531. https://doi.org/10.1111/j.1365-294X.2009.04275.x

    Article  PubMed  Google Scholar 

  66. 66.

    Little AF, van Oppen MJ, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494. https://doi.org/10.1126/science.1095733

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Cumbo VR, Baird AH, van Oppen MJH (2013) The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32:111–120. https://doi.org/10.1007/s00338-012-0951-7

    Article  Google Scholar 

  68. 68.

    Abrego D, Van Oppen MJH, Willis BL (2009) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543. https://doi.org/10.1111/j.1365-294X.2009.04276.x

    Article  PubMed  Google Scholar 

  69. 69.

    Poland DM, Coffroth MA (2017) Trans-generational specificity within a cnidarian-algal symbiosis. Coral Reefs 36:119–129. https://doi.org/10.1007/s00338-016-1514-0

    Article  Google Scholar 

  70. 70.

    Ali A, Kriefall NG, Emery LE, Kenkel CD, Matz MV, Davies SW (2019) Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment. Coral Reefs 38:405–415. https://doi.org/10.1007/s00338-019-01790-z

    Article  Google Scholar 

  71. 71.

    Suzuki G, Yamashita H, Kai S, Hayashibara T, Suzuki K, Iehisa Y, Okada W, Ando W, Komori T (2013) Early uptake of specific symbionts enhances the post-settlement survival of Acropora corals. Mar Ecol Prog Ser 494:149–158. https://doi.org/10.3354/meps10548

    Article  Google Scholar 

  72. 72.

    Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131. https://doi.org/10.1046/j.1461-0248.2001.00203.x

    Article  Google Scholar 

  73. 73.

    LaJeunesse TC, Smith R, Walther M, Pinzon J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magana AL, Perez AL, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc B 277:2925–2934. https://doi.org/10.1098/rspb.2010.0385

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc B 276:4139–4148. https://doi.org/10.1098/rspb.2009.1405

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Wee HB, Kurihara H, Reimer JD (2019) Reduced Symbiodiniaceae diversity in Palythoa tuberculosa at a heavily acidified coral reef. Coral Reefs 38:311–319. https://doi.org/10.1007/s00338-019-01776-x

    Article  Google Scholar 

  76. 76.

    Howe-Kerr LI, Bachelot B, Wright RM, Kenkel CD, Bay LK, Correa AMS (2020) Symbiont community diversity is more variable in corals that respond poorly to stress. Glob Chang Biol 26:2220–2234. https://doi.org/10.1111/gcb.14999

    Article  Google Scholar 

  77. 77.

    Zaneveld JR, McMinds R, Vega Thurber R (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:17121. https://doi.org/10.1038/nmicrobiol.2017.121

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ (2018) Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Chang Biol 24:e474–e484. https://doi.org/10.1111/gcb.13895

    Article  PubMed  Google Scholar 

  79. 79.

    Jiang L, Guo ML, Zhang F, Zhang YY, Zhou GW, Lei XM, Yuan XC, Sun YF, Yuan T, Cai L, Lian JS, Liu S, Qian PY, Huang H (2020) Impacts of elevated temperature and pCO2 on the brooded larvae of Pocillopora damicornis from Luhuitou Reef, China: evidence for local acclimatization. Coral Reefs 39:331–344. https://doi.org/10.1007/s00338-020-01894-x

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Administration of Sanya Coral Reef National Nature Reserve for providing sampling permits. Tao Yuan, Shize Zhang, and Lei Jiang are gratefully acknowledged for their experimental assistance. We are also particularly grateful to the staffs of Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences.

Funding

This work was supported by grant from the National Natural Science Foundation of China [41876192], the Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGLS20C01), Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0409), and the University Grants Committee (JLFS/M-602/18) of HKSAR.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guowei Zhou or Hui Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOC 1.38 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Tong, H., Cai, L. et al. Transgenerational Effects on the Coral Pocillopora damicornis Microbiome Under Ocean Acidification. Microb Ecol 82, 572–580 (2021). https://doi.org/10.1007/s00248-021-01690-2

Download citation

Keywords

  • Coral holobiont
  • Microbial communities
  • Ocean acidification