Skip to main content

Impacts of Invasive Australian Acacias on Soil Bacterial Community Composition, Microbial Enzymatic Activities, and Nutrient Availability in Fynbos Soils

Abstract

Invasive plants often impact soil conditions, notably through changes in soil chemistry and microbial community composition, potentially leading to altered soil functionality. We determine the impacts of invasive nitrogen-fixing Australian Acacia trees on soil chemistry and function (carbon, nitrogen, and phosphorus cycling) in South Africa’s Core Cape Subregion, and whether any differences in soil function are linked to differences in soil chemical properties and bacterial community composition between neighbouring acacia-invaded and uninvaded sites. We do so by using Illumina MiSeq sequencing data together with soil chemistry and soil enzyme activity profiles. Acacias significantly increased levels of soil nitrogen (NO3, NH4+, and total N), C, and pH. Although we did not find evidence that acacias affected soil bacterial community diversity, we did find them to alter bacterial community composition. Acacias also significantly elevated microbial phosphatase activity, but not β-glucosidase, whilst having contrasting effects on urease. Changes in soil chemical properties under acacia invasion were found to correlate with changes in enzyme activities for urease and phosphatase. Similarly, changes in soil bacterial community composition were correlated to changes in phosphatase enzymatic activity levels under acacia invasion. Whilst we found evidence for acacias altering soil function by changing soil chemical properties and bacterial community composition, these impacts appear to be specific to local site conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Vitousek PM, D’Antonio CM, Loope LL et al (1997) Introduced species: a significant component of human-caused global environmental change the scope and distribution of invasions. N Z J Ecol 21:1–16

    Google Scholar 

  2. 2.

    Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208

    Article  Google Scholar 

  3. 3.

    Mack RN, Simberloff D, Lonsdale WM et al (2000) Issues in ecology. Ecol Appl 10:689–710. https://doi.org/10.1890/0012-9623(2005)86[249b:IIE]2.0.CO;2

    Article  Google Scholar 

  4. 4.

    Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger H, Kartesz J, Kenis M, Kreft H, Kühn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Štajerová K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:1–9. https://doi.org/10.1038/ncomms14435

    CAS  Article  Google Scholar 

  5. 5.

    Corbin JD, D’Antonio CM (2012) Gone but not forgotten? invasive plants’ legacies on community and ecosystem properties. Invasive Plant Sci Manag 5:117–124. https://doi.org/10.1614/IPSM-D-11-00005.1

    Article  Google Scholar 

  6. 6.

    Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x

    Article  Google Scholar 

  7. 7.

    Michelan TS, Thomaz SM, Bando FM, Bini LM (2018) Competitive effects hinder the recolonization of native species in environments densely occupied by one invasive exotic species. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01261

  8. 8.

    Li WH, Zhang CB, Jiang HB, Xin GR, Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281:309–324. https://doi.org/10.1007/s11104-005-9641-3

    CAS  Article  Google Scholar 

  9. 9.

    Souza-Alonso P, Novoa A, González L (2014) Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol Biochem 79:100–108. https://doi.org/10.1016/j.soilbio.2014.09.008

    CAS  Article  Google Scholar 

  10. 10.

    Souza-Alonso P, Guisande-Collazo A, González L (2015) Gradualism in Acacia dealbata link invasion: impact on soil chemistry and microbial community over a chronological sequence. Soil Biol Biochem 80:315–323. https://doi.org/10.1016/j.soilbio.2014.10.022

    CAS  Article  Google Scholar 

  11. 11.

    Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Article  Google Scholar 

  12. 12.

    Gibbons SM, Lekberg Y, Mummey DL et al (2017) Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2:e00178–e00116. https://doi.org/10.1128/mSystems.00178-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Brussaard L, Behan-Pelletier VM, Bignell DE et al (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570. https://doi.org/10.2307/1313535

    Article  Google Scholar 

  14. 14.

    Fisk MC, Fahey TJ (2001) Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young Northern hardwood forests. Biogeochemistry 53:201–223

    CAS  Article  Google Scholar 

  15. 15.

    Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. https://doi.org/10.1016/j.soilbio.2004.09.014

    CAS  Article  Google Scholar 

  16. 16.

    Nannipieri P, Ascher J, Ceccherini L et al (2017) Microbial diversity and soil functions. Eur J Soil Sci 68:12–26

    CAS  Article  Google Scholar 

  17. 17.

    Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226. https://doi.org/10.1371/journal.pbio.1002226

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Xiang X, Gibbons SM, Li H, Shen H, Fang J, Chu H (2018) Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem. Plant Soil 425:539–551. https://doi.org/10.1007/s11104-018-3605-x

    CAS  Article  Google Scholar 

  20. 20.

    Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. https://doi.org/10.1007/s10021-002-0151-3

    CAS  Article  Google Scholar 

  21. 21.

    Liao JD, Boutton TW (2008) Soil microbial biomass response to woody plant invasion of grassland. Soil Biol Biochem 40:1207–1216. https://doi.org/10.1016/j.soilbio.2007.12.018

    CAS  Article  Google Scholar 

  22. 22.

    Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Tharayil N, Bhowmik P, Alpert P, Walker E, Amarasiriwardena D, Xing B (2009) Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol 181:424–434. https://doi.org/10.1111/j.1469-8137.2008.02647.x

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69. https://doi.org/10.1007/s10886-009-9735-0

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00368

    Article  Google Scholar 

  26. 26.

    Corbin JD, Antonio CMD (2004) Symposium effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technol 18:1464–1467

    CAS  Article  Google Scholar 

  27. 27.

    Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak system. Plant Ecol 174:97–107

    Article  Google Scholar 

  28. 28.

    Lekberg Y, Bever JD, Bunn RA, Callaway RM, Hart MM, Kivlin SN, Klironomos J, Larkin BG, Maron JL, Reinhart KO, Remke M, van der Putten WH (2018) Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecol Lett 21:1268–1281. https://doi.org/10.1111/ele.13093

    Article  PubMed  Google Scholar 

  29. 29.

    Richardson DM, Le Roux JJ, Wilson JRU (2015) Australian acacias as invasive species: lessons to be learnt from regions with long planting histories. South For a J For Sci 77:31–39. https://doi.org/10.2989/20702620.2014.999305

    Article  Google Scholar 

  30. 30.

    Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species–a global review. Divers Distrib 17:788–809. https://doi.org/10.1111/j.1472-4642.2011.00782.x

    Article  Google Scholar 

  31. 31.

    Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias-a global experiment in biogeography. Divers Distrib 17:771–787. https://doi.org/10.1111/j.1472-4642.2011.00824.x

    Article  Google Scholar 

  32. 32.

    Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. https://doi.org/10.1007/s11104-008-9833-8

    CAS  Article  Google Scholar 

  33. 33.

    Gaertner M, Biggs R, Te Beest M et al (2014) Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers Distrib 20:733–744. https://doi.org/10.1111/ddi.12182

    Article  Google Scholar 

  34. 34.

    Witkowski AETF (1991) Effects of invasive alien acacias on nutrient cycling in the coastal lowlands of the Cape Fynbos. J Appl Ecol 28:1–15

    Article  Google Scholar 

  35. 35.

    Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African Fynbos. Restor Ecol 12:44–51

    Article  Google Scholar 

  36. 36.

    Slabbert E, Jacobs SM, Jacobs K (2014) The soil bacterial communities of South African fynbos riparian ecosystems invaded by Australian Acacia species. PLoS One 9:e86560. https://doi.org/10.1371/journal.pone.0086560

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kamutando CN, Vikram S, Kamgan-Nkuekam G, Makhalanyane TP, Greve M, Roux JJL, Richardson DM, Cowan D, Valverde A (2017) Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-07018-w

    CAS  Article  Google Scholar 

  38. 38.

    Le Roux JJ, Ellis AG, van Zyl L-M et al (2018) Importance of soil legacy effects and successful mutualistic interactions during Australian acacia invasions in nutrient-poor environments. J Ecol 106:2071–2081. https://doi.org/10.1111/1365-2745.12965

    Article  Google Scholar 

  39. 39.

    Marchante E, Kjøller A, Struwe S, Freitas H (2009) Soil recovery after removal of the N2-fixing invasive Acacia longifolia: consequences for ecosystem restoration. Biol Invasions 11:813–823. https://doi.org/10.1007/s10530-008-9295-1

    Article  Google Scholar 

  40. 40.

    Holmes PM, Cowling RM (1997) The effects of invasion by Acacia saligna on the guild structure and regeneration capabilities of south african fynbos shrublands. J Appl Ecol 34:317–332. https://doi.org/10.2307/2404879

    Article  Google Scholar 

  41. 41.

    Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. https://doi.org/10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  42. 42.

    Manning JC, Goldblatt P (2012) Plants of The Greater Cape Floristic Region 1: The Core Cape Flora. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  43. 43.

    Keet J-H, Ellis AG, Hui C, Le Roux JJ (2019) Strong spatial and temporal turnover of soil bacterial communities in South Africa’s hyperdiverse fynbos biome. Soil Biol Biochem 136:107541. https://doi.org/10.1016/j.soilbio.2019.107541

    CAS  Article  Google Scholar 

  44. 44.

    SSSA (1996) Methods of soil analysis, Part 3. Soil Science Society of America, Madison

    Google Scholar 

  45. 45.

    Novoa A, Rodríguez R, Richardson DM, González L (2014) Soil quality: a key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br. Biol Invasions 16:429–443. https://doi.org/10.1007/s10530-013-0531-y

    Article  Google Scholar 

  46. 46.

    Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310. https://doi.org/10.1371/journal.pone.0027310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    R Core Team (2020) R: A language and environment for statistical computing

  51. 51.

    Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787. https://doi.org/10.1007/s10592-005-9056-y

    CAS  Article  Google Scholar 

  52. 52.

    Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

  53. 53.

    Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

    Article  Google Scholar 

  54. 54.

    Jost L (2010) The relation between evenness and diversity. Diversity 2:207–232. https://doi.org/10.3390/d2020207

    Article  Google Scholar 

  55. 55.

    Oksanen JF, Blanchet FG, Friendly M, et al (2019) Vegan: community ecology package. R package version 2.5-6

  56. 56.

    Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  Google Scholar 

  57. 57.

    Charney N, Record S (2012) Vegetarian: Jost diversity measures for community data. R package version 1.2

  58. 58.

    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  Google Scholar 

  59. 59.

    Sauvadet M, Chauvat M, Brunet N, Bertrand I (2017) Can changes in litter quality drive soil fauna structure and functions? Soil Biol Biochem 107:94–103. https://doi.org/10.1016/j.soilbio.2016.12.018

    CAS  Article  Google Scholar 

  60. 60.

    Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–131. https://doi.org/10.1007/s11258-006-9126-3

    Article  Google Scholar 

  61. 61.

    Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19. https://doi.org/10.18637/jss.v022.i07

    Article  Google Scholar 

  62. 62.

    Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  63. 63.

    Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67:101p1–101p11. https://doi.org/10.1051/forest/2009082

    Article  Google Scholar 

  64. 64.

    González-Muñoz N, Costa-Tenorio M, Espigares T (2012) Invasion of alien Acacia dealbata on Spanish Quercus robur forests: impact on soils and vegetation. For Ecol Manag 269:214–221. https://doi.org/10.1016/j.foreco.2011.12.026

    Article  Google Scholar 

  65. 65.

    Marchante E, Kjøller A, Struwe S, Freitas H (2008) Invasive Acacia longifolia induce changes in the microbial catabolic diversity of sand dunes. Soil Biol Biochem 40:2563–2568. https://doi.org/10.1016/j.soilbio.2008.06.017

    CAS  Article  Google Scholar 

  66. 66.

    Lazzaro L, Giuliani C, Fabiani A, Agnelli AE, Pastorelli R, Lagomarsino A, Benesperi R, Calamassi R, Foggi B (2014) Soil and plant changing after invasion: the case of Acacia dealbata in a Mediterranean ecosystem. Sci Total Environ 497–498:491–498. https://doi.org/10.1016/j.scitotenv.2014.08.014

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Hellmann C, Sutter R, Rascher KG, Máguas C, Correia O, Werner C (2011) Impact of an exotic N2-fixing Acacia on composition and N status of a native Mediterranean community. Acta Oecol 37:43–50. https://doi.org/10.1016/j.actao.2010.11.005

    Article  Google Scholar 

  68. 68.

    Yelenik SG, Stock WD, Richardson DM (2007) Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function. Biol Invasions 9:117–125. https://doi.org/10.1007/s10530-006-0008-3

    Article  Google Scholar 

  69. 69.

    Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A (2014) What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol Lett 17:1–12. https://doi.org/10.1111/ele.12197

    Article  PubMed  Google Scholar 

  70. 70.

    Cowling RM (1990) Diversity components in a species-rich area of the Cape Floristic Region. J Veg Sci 1:699–710

    Article  Google Scholar 

  71. 71.

    Lorenzo P, Rodríguez-Echeverría S, González L, Freitas H (2010) Effect of invasive Acacia dealbata Link on soil microorganisms as determined by PCR-DGGE. Appl Soil Ecol 44:245–251. https://doi.org/10.1016/j.apsoil.2010.01.001

    Article  Google Scholar 

  72. 72.

    Rebelo AG, Boucher C, Helme N et al (2006) Fynbos Biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia. South African National Biodiversity Institute, Pretoria, pp 53–219

    Google Scholar 

  73. 73.

    Cowling RM, Lombard AT (2002) Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8:163–179

    Article  Google Scholar 

  74. 74.

    Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16s rRNA and 16s rRNA genes. Appl Environ Microbiol 72:1719–1728. https://doi.org/10.1128/AEM.72.3.1719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    DeBruyn JM, Nixon LT, Fawaz MN et al (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl Environ Microbiol 77:6295–6300. https://doi.org/10.1128/AEM.05005-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Dye P, Jarmain C (2004) Water use by black wattle (Acacia mearnsii): implications for the link between removal of invading trees and catchment streamflow response. S Afr J Sci 100:40–44

    Google Scholar 

  77. 77.

    Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546

    CAS  Article  Google Scholar 

  78. 78.

    Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl Environ Microbiol 71:5943–5950. https://doi.org/10.1128/AEM.71.10.5943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636. https://doi.org/10.1007/s00253-013-5206-1

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. https://doi.org/10.1128/AEM.00335-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Nimaichand S, Devi AM, Tamreihao K, Ningthoujam DS, Li WJ (2015) Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.00413

    Article  Google Scholar 

  82. 82.

    Shange RS, Ankumah RO, Ibekwe AM, Zabawa R, Dowd SE (2012) Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS One 7:e40338. https://doi.org/10.1371/journal.pone.0040338

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–530

    CAS  Article  Google Scholar 

  84. 84.

    Bardhan S, Jose S, Jenkins MA, Webster CR, Udawatta RP, Stehn SE (2012) Microbial community diversity and composition across a gradient of soil acidity in spruce-fir forests of the southern Appalachian Mountains. Appl Soil Ecol 61:60–68. https://doi.org/10.1016/j.apsoil.2012.04.010

    Article  Google Scholar 

  85. 85.

    Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2014) Bacterial diversity and community structure along different peat soils in boreal forest. Appl Soil Ecol 74:37–45. https://doi.org/10.1016/j.apsoil.2013.09.010

    Article  Google Scholar 

  86. 86.

    Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol 91:1–17. https://doi.org/10.1093/femsec/fiu024

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Singleton DR, Furlong MA, Peacock AD, White DC, Coleman DC, Whitman WB (2003) Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53:485–490. https://doi.org/10.1099/ijs.0.02438-0

    Article  PubMed  Google Scholar 

  88. 88.

    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631. https://doi.org/10.1073/pnas.0507535103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci 108:7850–7854. https://doi.org/10.1073/pnas.1016308108

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    O’Brien SL, Gibbons SM, Owens SM et al (2016) Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol 18:2039–2051. https://doi.org/10.1111/1462-2920.13231

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Vos M, Wolf AB, Jennings SJ, Kowalchuk GA (2013) Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37:936–954. https://doi.org/10.1111/1574-6976.12023

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610. https://doi.org/10.1111/j.1469-8137.2006.01931.x

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Malinich E, Lynn-Bell N, Kourtev PS (2017) The effect of the invasive Elaeagnus umbellata on soil microbial communities depends on proximity of soils to plants. Ecosphere 8:e01827. https://doi.org/10.1002/ecs2.1827

    Article  Google Scholar 

  94. 94.

    Gibbons SM, Gilbert JA (2015) Microbial diversity-exploration of natural ecosystems and microbiomes. Curr Opin Genet Dev 35:66–72. https://doi.org/10.1016/j.gde.2015.10.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Thompson LR, Sanders JG, McDonald D et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463. https://doi.org/10.1038/nature24621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487

    Article  Google Scholar 

  97. 97.

    Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905. https://doi.org/10.1016/S0038-0717(03)00120-2

    CAS  Article  Google Scholar 

  98. 98.

    Cao H, Chen R, Wang L, Jiang L, Yang F, Zheng S, Wang G, Lin X (2016) Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci Rep 6:25815. https://doi.org/10.1038/srep25815

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Green J, Holmes A, Westoby M et al (2004) Spatial scaling of microbial diversity. Nature 432:747–750

    CAS  Article  Google Scholar 

  100. 100.

    Soininen J, Mcdonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography (Cop) 30:3–12. https://doi.org/10.1111/j.2006.0906-7590.04817.x

    Article  Google Scholar 

  101. 101.

    Chapuis-Lardy L, Vanderhoeven S, Dassonville N, Koutika LS, Meerts P (2006) Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol Fertil Soils 42:481–489. https://doi.org/10.1007/s00374-005-0039-4

    Article  Google Scholar 

  102. 102.

    Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846. https://doi.org/10.1016/S0038-0717(00)00157-7

    CAS  Article  Google Scholar 

  103. 103.

    Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2013) Seasonal variation in functional properties of microbial communities in beech forest soil. Soil Biol Biochem 60:95–104. https://doi.org/10.1016/j.soilbio.2013.01.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109:21390–21395. https://doi.org/10.1073/pnas.1215210110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Angel Valverde for assistance and advice regarding next-generation sequencing methodologies, as well as all the various landowners and managers who generously allowed us to sample on their properties. Specifically, we would like to thank Sean and Michelle Privett from Flower Valley, Simon and Shawn Graaff from Koude Vlakte, Peter Borain from Vermaaklikheid, Jacques van Rensburg from Vergelegen Wine Estate, and Russel Metcalf from Walshacres. Finally, the authors wish to thank Nkoliso Magona and Florencia Yannelli for assistance with field and lab work.

Funding

This research was funded by the South African National Research Foundation (grant nos. 93591 to JLR; 89967, 109244, and 109683 to CH). AN acknowledges funding from EXPRO grant no. 19-28807X (Czech Science Foundation) and long-term research development project RVO 67985939 (The Czech Academy of Sciences).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan-Hendrik Keet.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

ESM 1

(DOCX 230 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keet, JH., Ellis, A.G., Hui, C. et al. Impacts of Invasive Australian Acacias on Soil Bacterial Community Composition, Microbial Enzymatic Activities, and Nutrient Availability in Fynbos Soils. Microb Ecol 82, 704–721 (2021). https://doi.org/10.1007/s00248-021-01683-1

Download citation

Keywords

  • 16S rDNA
  • Australian acacias
  • Enzyme activities
  • Fynbos
  • Invasion
  • Soil function
  • Soil microbial ecology