Skip to main content

Seasonal Variation in Fungal Community Composition Associated with Tamarix chinensis Roots in the Coastal Saline Soil of Bohai Bay, China


Coastal salinity typically alters the soil microbial communities, which subsequently affect the biogeochemical cycle of nutrients in the soil. The seasonal variation of the soil fungal communities in the coastal area, closely associated with plant population, is poorly understood. This study provides an insight into the fungal community’s variations from autumn to winter and spring to summer at a well-populated area of salt-tolerant Tamarix chinensis and beach. The richness and diversity of fungal community were higher in the spring season and lower in the winter season, as showed by high throughput sequencing of the 18S rRNA gene. Ascomycota was the predominant phylum reported in all samples across the region, and higher difference was reported at order level across the seasonal variations. The redundancy analysis suggested that the abundance and diversity of fungal communities in different seasons are mainly correlated to total organic carbon and total nitrogen. Additionally, the saprotrophic and pathotrophic fungi decreased while symbiotic fungi increased in the autumn season. This study provides a pattern of seasonal variation in fungal community composition that further broadens our limited understanding of how the density of the salt-tolerant T. chinensis population of the coastal saline soil could respond to their seasonal variations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Data will be provided upon acceptance of manuscript.


  1. 1.

    Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404.

    Article  CAS  Google Scholar 

  2. 2.

    Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259.

    Article  CAS  Google Scholar 

  3. 3.

    Zhang K, Shi Y, Cui X, Yue P, Li K, Liu X, Tripathi BM, Chu H (2019) Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4:e00225–18.

    Article  PubMed Central  PubMed  Google Scholar 

  4. 4.

    Wang J, Huang X, Zhong T, Chen Z (2011) Review on sustainable utilization of salt-affected land. Acta Ecol. Sin 66:673–684

    Google Scholar 

  5. 5.

    Wang L, Sun X, Li S, Zhang T, Zhang W, Zhai P (2014) Application of organic amendments to a coastal saline soil in North China: effects on soil physical and chemical properties and tree growth. PLoS One 9:e89185.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. 6.

    Sun L, Liu W, Liu G, Chen T, Zhang W, Wu X, Zhang G, Zhang Y, Li L, Zhang B, Zhang B, Wang B, Yang R (2016) Temporal and spatial variations in the stable carbon isotope composition and carbon and nitrogen contents in current-season twigs of Tamarix chinensis Lour. and their relationships to environmental factors in the Laizhou Bay wetland in China. Ecol Eng 90:417–426.

    Article  Google Scholar 

  7. 7.

    Morris SJ, Blackwood CB (2015) The ecology of the soil biota and their function. In: Paul EA (ed.) Soil microbiology, ecology, and biochemistry. Academic Press, London, pp 273–309.

  8. 8.

    Yang W, Yan Y, Jiang F, Leng X, Cheng X, An S (2016) Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408:443–456.

    Article  CAS  Google Scholar 

  9. 9.

    Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641.

    Article  Google Scholar 

  10. 10.

    Wardle D, Bardgett R, Klironomos J, Seta H, van der Putten W, Wall D (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  Google Scholar 

  11. 11.

    López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P (2015) The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem 87:43–50.

    Article  CAS  Google Scholar 

  12. 12.

    Siles JA, Margesin R (2017) Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci Rep 7:2204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. 13.

    Liu W, Zhang W, Liu G, Zhang Y, Zhang G (2016) Microbial diversity in the saline–alkali soil of a coastal Tamarix chinensis woodland at Bohai Bay, China. J Arid Land 8:284–292.

    Article  Google Scholar 

  14. 14.

    Buckeridge KM, Banerjee S, Siciliano SD, Grogan P (2013) The seasonal pattern of soil microbial community structure in Mesic low arctic tundra. Soil Biol Biochem 65:338–347.

    Article  CAS  Google Scholar 

  15. 15.

    Di C (2011) Seasonal changes in and relationship between soil microbial and microfaunal communities in a Tamarix chinensis community in the Yellow River Delta. Afr J Biotechnol 10:18425–18432.

    Article  Google Scholar 

  16. 16.

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou N, Wijesundera R (2014) Global diversity and geography of soil fungi. Sci 346:1256688.

    Article  CAS  Google Scholar 

  17. 17.

    Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10:2369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. 18.

    Makipaa R, Rajala T, Schigel D, Rinne KT, Pennanen T, Abrego N, Ovaskainen O (2017) Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J 11:1964–1974.

    Article  PubMed Central  PubMed  Google Scholar 

  19. 19.

    Mickan BS, Hart MM, Solaiman ZM, Jenkins S, Siddique KHM, Abbott LK (2017) Molecular divergence of fungal communities in soil, roots and hyphae highlight the importance of sampling strategies. Rhizosphere 4:104–111.

    Article  Google Scholar 

  20. 20.

    Bachelot B, Uriarte M, Zimmerman J, Thompson J, Leff J, Asiaii A, Koshner J, Mcguire K (2016) Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests. Ecol Appl 26:1881–1895

    Article  Google Scholar 

  21. 21.

    Leff JW, Jones SE, Prober SM, Barberan A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JM, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schutz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA 112:10967–10972.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. 22.

    Santalahti M, Sun H, Jumpponen A, Pennanen T, Heinonsalo J (2016) Vertical and seasonal dynamics of fungal communities in boreal scots pine forest soil. FEMS Microbiol Ecol 92(11):fiw170.

    Article  CAS  Google Scholar 

  23. 23.

    Collins CG, Stajich JE, Weber SE, Pombubpa N, Diez JM (2018) Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol Ecol 27:2461–2476.

    Article  PubMed Central  PubMed  Google Scholar 

  24. 24.

    Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T, Valášková V (2013) Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem 56:60–68.

    Article  CAS  Google Scholar 

  25. 25.

    Hu X, Liu J, Wei D, Zhu P, Xa C, Zhou B, Chen X, Jin J, Liu X, Wang G (2017) Effects of over 30-year of different fertilization regimes on fungal community compositions in the black soils of Northeast China. Agric Ecosyst Environ 248:113–122.

    Article  Google Scholar 

  26. 26.

    Yang W, Zhang D, Cai X, Xia L, Luo Y, Cheng X, An S (2019) Significant alterations in soil fungal communities along a chronosequence of Spartina alterniflora invasion in a Chinese Yellow Sea coastal wetland. Sci Total Environ 693:133548.

    Article  CAS  Google Scholar 

  27. 27.

    Zimudzi J, van der Waals JE, Coutinho TA, Cowan DA, Valverde A (2018) Temporal shifts of fungal communities in the rhizosphere and on tubers in potato fields. Fungal Biol 122:928–934.

    Article  Google Scholar 

  28. 28.

    Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H (2012) Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol 195:844–856.

    Article  CAS  Google Scholar 

  29. 29.

    Shigyo N, Umeki K, Hirao T (2019) Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front Microbiol 10:1944.

    Article  PubMed Central  PubMed  Google Scholar 

  30. 30.

    Hou X, Wu T, Yu L, Qian S (2012) Characteristics of multi-temporal scale variation of vegetation coverage in the Circum Bohai Bay region, 1999–2009. Acta Ecol Sin 32:297–304.

    Article  Google Scholar 

  31. 31.

    Zhu G, Xu X, Ma Z, Xu L, Porter J (2012) Spatial dynamics and zoning of coastal land-use change along Bohai Bay, China, during 1979–2008. J Coastal Res 28:1186.

    Article  Google Scholar 

  32. 32.

    Jiang Z, Chen Y, Bao Y (2011) Population genetic structure of Tamarix chinensis in the Yellow River Delta, China. Plant Syst Evol 298:147–153.

    Article  Google Scholar 

  33. 33.

    Qvit-Raz N, Finkel OM, Al-Deeb TM, Malkawi HI, Hindiyeh MY, Jurkevitch E, Belkin S (2012) Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region. Res Microbiol 163:142–150.

    Article  Google Scholar 

  34. 34.

    Ade LJ, Hu L, Zi HB, Wang CT, Lerdau M, Dong SK (2018) Effect of snowpack on the soil bacteria of alpine meadows in the Qinghai-Tibetan plateau of China. Catena 164:13–22.

    Article  CAS  Google Scholar 

  35. 35.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. 36.

    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. 37.

    Brannock PM, Halanych KM (2015) Meiofaunal community analysis by high-throughput sequencing: comparison of extraction, quality filtering, and clustering methods. Mar Genomics 23:67–75.

    Article  Google Scholar 

  38. 38.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. 39.

    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. 40.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. 41.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. 42.

    Wang W, Wang J, Ye Z, Zhang T, Qu L, Li J (2019) Soil property and plant diversity determine bacterial turnover and network interactions in a typical arid inland river basin, Northwest China. Front Microbiol 10:2655.

    Article  PubMed Central  PubMed  Google Scholar 

  43. 43.

    Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011) Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl Soil Ecol 48:38–44.

    Article  Google Scholar 

  44. 44.

    Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91:13–32

    Article  Google Scholar 

  45. 45.

    Praeg N, Pauli H, Illmer P (2019) Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-Alpine altitudinal gradient. Front Microbiol 10:1429.

    Article  PubMed Central  PubMed  Google Scholar 

  46. 46.

    Jirout J, Šimek M, Elhottová D (2011) Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol Biochem 43:647–656.

    Article  CAS  Google Scholar 

  47. 47.

    Zhang T, Wang NF, Liu HY, Zhang YQ, Yu LY (2016) Soil pH is a key determinant of soil fungal community composition in the Ny-Alesund region, Svalbard (high Arctic). Front Microbiol 7:227.

    Article  PubMed Central  PubMed  Google Scholar 

  48. 48.

    Arfi Y, Marchand C, Wartel M, Record E (2012) Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecol 5:282–285.

    Article  Google Scholar 

  49. 49.

    Lim YW, Kim BK, Kim C, Jung HS, Kim BS, Lee JH, Chun J (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289.

    Article  Google Scholar 

  50. 50.

    Menezes CB, Bonugli-Santos RC, Miqueletto PB, Passarini MR, Silva CH, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RG, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state, Brazil. Microbiol Res 165:466–482.

    Article  PubMed Central  PubMed  Google Scholar 

  51. 51.

    Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA 111:9923–9928.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. 52.

    Bonugli-Santos RC, Durrant LR, da Silva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzym Microb Technol 46:32–37.

    Article  CAS  Google Scholar 

  53. 53.

    Morrison EW, Frey SD, Sadowsky JJ, van Diepen LTA, Thomas WK, Pringle A (2016) Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol 23:48–57.

    Article  Google Scholar 

  54. 54.

    Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536.

    Article  CAS  Google Scholar 

  55. 55.

    Cho H, Kim M, Tripathi B, Adams J (2017) Changes in soil fungal community structure with increasing disturbance frequency. Microb Ecol 74:62–77.

    Article  Google Scholar 

  56. 56.

    Sterkenburg E, Bahr A, Brandstrom Durling M, Clemmensen KE, Lindahl BD (2015) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol 207:1145–1158.

    Article  Google Scholar 

  57. 57.

    Min YJ, Park MS, Fong JJ, Quan Y, Jung S, Lim YW (2014) Diversity and saline resistance of endophytic fungi associated with Pinus thunbergii in coastal shelterbelts of Korea. J Microbiol Biotechnol 24:324–333.

    Article  Google Scholar 

  58. 58.

    Ren Q, Sun L, Wu H, Wang Y, Wang Z, Zheng F, Lu X, Xu J (2019) The changes of microbial community and flavor compound in the fermentation process of Chinese rice wine using Fagopyrum tataricum grain as feedstock. Sci Rep 9:3365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. 59.

    Guan M, Pan XC, Wang S, Wei XL, Zhang CB, Wang J, Liu WL, Liu SY, Chang J (2018) Comparison of fungal communities among ten macrophyte rhizospheres. Fungal Biol 122:867–874.

    Article  Google Scholar 

  60. 60.

    Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S, Hong SG, Kim OS, Chun J, Lee YK (2014) Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiol Ecol 89:465–475.

    Article  CAS  Google Scholar 

  61. 61.

    Bosabalidis A (2012) Programmed cell death in salt glands of Tamarix aphylla L.: an electron microscope analysis. Open Life Sci 7:927–930.

    Article  Google Scholar 

  62. 62.

    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248.

    Article  Google Scholar 

  63. 63.

    Mucha J, Peay KG, Smith DP, Reich PB, Stefanski A, Hobbie SE (2018) Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microb Ecol 75:348–363.

    Article  CAS  Google Scholar 

  64. 64.

    Chen Q, Lei T, Wu Y, Si G, Xi C, Zhang G (2019) Comparison of soil organic matter transformation processes in different Alpine ecosystems in the Qinghai–Tibet plateau. J Geophys Res 124:33–45.

    Article  CAS  Google Scholar 

  65. 65.

    Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416.

    Article  Google Scholar 

  66. 66.

    Crowther TW, Boddy L, Hefin Jones T (2012) Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J 6:1992–2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. 67.

    Schmidt R, Mitchell J, Scow K (2019) Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol Biochem 129:99–109.

    Article  CAS  Google Scholar 

  68. 68.

    Yang W, Zhao H, Leng X, Cheng X, An S (2017) Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China. Catena 156:281–289.

    Article  CAS  Google Scholar 

  69. 69.

    Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, Zifcakova L, Snajdr J, Ridl J, Vlcek C, Voriskova J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258.

    Article  CAS  Google Scholar 

  70. 70.

    Wutkowska M, Vader A, Mundra S, Cooper EJ, Eidesen PB (2018) Dead or alive; or does it really matter? Level of congruency between trophic modes in total and active fungal communities in high Arctic soil. Front. Microbiol. 9:3243.

    Article  Google Scholar 

  71. 71.

    Yao YH, Qing H, An SH, He J, Wang Y (2010) Growth and biomass allocation of differently-aged populations of spartina alterniflora. Acta Ecologica Sinica 30, 19: 5200–5208.

  72. 72.

    Tripathi S, Chakraborty A, Chakrabarti K, Bandyopadhyay BK (2007) Enzyme activities and microbial biomass in coastal soils of India. Soil Biol Biochem 39:2840–2848.

    Article  CAS  Google Scholar 

Download references


This work was supported by grants from the National Science Foundation of China (31870479, 31570498) and the CAS-President’s International Fellowship Initiative (PIFI) Postdoctoral Fellowship (2021 PB0072).


This study received funding from the following sources: the National Science Foundation of China (31,870,479, 31,570,498) and the CAS-President’s International Fellowship Initiative (PIFI) Postdoctoral Fellowship (2021 PB0072).

Author information




WZ and AB performed the experiments and prepared the manuscript. AB helped to prepare some experiments. GZ, and XW contributed in sampling from study area, and AB and WS performed the statistical analysis. WS, XW, TC, HS, and GL modified and revised the writing.

Corresponding authors

Correspondence to Guangxiu Liu or Tuo Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Supplementary Information


(DOCX 1416 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Bahadur, A., Sajjad, W. et al. Seasonal Variation in Fungal Community Composition Associated with Tamarix chinensis Roots in the Coastal Saline Soil of Bohai Bay, China. Microb Ecol 82, 652–665 (2021).

Download citation


  • Coastal salinity
  • Fungal community
  • Seasonality
  • Plant coverage density
  • Fungal trophic modes