Skip to main content
Log in

Relationship Between Peat Type and Microbial Ecology in Sphagnum-Containing Peatlands of the Adirondack Mountains, NY, USA

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Peatland microbial community composition varies with respect to a range of biological and physicochemical variables. While the extent of peat degradation (humification) has been linked to microbial community composition along vertical stratification gradients within peatland sites, across-site variations have been relatively unexplored. In this study, we compared microbial communities across ten pristine Sphagnum-containing peatlands in the Adirondack Mountains, NY, which represented three different peat types—humic fen peat, humic bog peat, and fibric bog peat. Using 16S amplicon sequencing and network correlation analysis, we demonstrate that microbial community composition is primarily linked to peat type, and that distinct taxa networks distinguish microbial communities in each type. Shotgun metagenomic sequencing of the active water table region (mesotelm) from two Sphagnum-dominated bogs—one with fibric peat and one with humic peat—revealed differences in primary carbon degradation pathways, with the fibric peat being dominated by carbohydrate metabolism and hydrogenotrophic methanogenesis, and the humic peat being dominated by aliphatic carbon metabolism and aceticlastic methanogenesis. Our results suggest that peat humification is a major factor driving microbial community dynamics across peatland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Metagenomic sequencing and assembly files are stored in a public KBase narrative: https://narrative.kbase.us/narrative/57002.

References

  1. Rydin H, Jeglum J (2013) The biology of peatlands2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  2. van Breeman N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  Google Scholar 

  3. Zalman C, Keller JK, Tfaily M, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton J, Kostka JE, Gill A, Finzi A, Hopple AM, Bohannan BJM, Bridgham SD (2018) Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry 139:155–177

    Article  CAS  Google Scholar 

  4. Asemaninejad A, Thorn RG, Branfireun BA, Lindo Z (2019) Vertical stratification of peatland microbial communities follows a gradient of functional types across hummock-hollow microtopographies. Ecoscience 26:249–258

    Article  Google Scholar 

  5. Seward J, Carson MA, Lamit LJ, Basiliko N, Yavitt JB, Lilleskov E, Schadt CW, Smith DS, Mclaughlin J, Mykytczuk N, Willims-Johnson S, Roulet N, Moore T, Harris L, Bräuer S (2020) Peatland microbial community composition is driven by a natural climate gradient. Microb Ecol 80:593–602

    Article  CAS  PubMed  Google Scholar 

  6. Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD (2012) pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic-minerotrophic gradient. Soil Biol Biochem 54:36–47

    Article  CAS  Google Scholar 

  7. Fisk MC, Ruether KF, Yavitt JB (2003) Microbial activity and functional composition among northern peatland ecosystems. Soil Biol Biochem 35:591–602

    Article  CAS  Google Scholar 

  8. Artz RRE, Chapman SJ, Campbell CD (2006) Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biol Biochem 38:2958–2962

    Article  CAS  Google Scholar 

  9. Lin X, Tfaily MM, Steinweg JM et al (2014) Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Appl Environ Microbiol 80:3531–3540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tfaily MM, Cooper WT, Kostka JE et al (2014) Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. JGR Biogeosciences 119:661–675

    Article  CAS  Google Scholar 

  11. Lehtonen K, Ketola M (1993) Solvent-extractable lipids of Sphagnum, Carex, Bryales, and Carex-Bryales peats: content and compositional features vs peat humification. Org Geochem 20:363–380

    Article  CAS  Google Scholar 

  12. Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton P, Imvittaya A, Chanton JP, Cooper W, Schadt C, Kostka JE (2014) Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl Environ Microbiol 80:3531–3540. https://doi.org/10.1128/AEM.00206-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinweg JM, Kostka JE, Hanson PJ, Schadt CW (2018) Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol Biochem 125:244–250

    Article  CAS  Google Scholar 

  14. Chambers FM, Barber KE, Maddy D, Brew J (1997) A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. The Holocene 7:391–399

    Article  Google Scholar 

  15. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1

    Article  CAS  PubMed  Google Scholar 

  16. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  18. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ivanova AA, Beletsky AV, Rakitin AL, Kadnikov VV, Philippov DA, Mardanov AV, Ravin NV, Dedysh SN (2020) Closely located but totally distinct: highly contrasting prokaryotic diversity patterns in raised bogs and eutrophic fens. Microorganisms 8:484

    Article  PubMed Central  Google Scholar 

  21. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan SY, Kamimura RT, Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D, Weston DJ, Allen BH, Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia JM, Chia JM, Colasanti R, Conrad N, Davis JJ, Davison BH, DeJongh M, Devoid S, Dietrich E, Dubchak I, Edirisinghe JN, Fang G, Faria JP, Frybarger PM, Gerlach W, Gerstein M, Greiner A, Gurtowski J, Haun HL, He F, Jain R, Joachimiak MP, Keegan KP, Kondo S, Kumar V, Land ML, Meyer F, Mills M, Novichkov PS, Oh T, Olsen GJ, Olson R, Parrello B, Pasternak S, Pearson E, Poon SS, Price GA, Ramakrishnan S, Ranjan P, Ronald PC, Schatz MC, Seaver SMD, Shukla M, Sutormin RA, Syed MH, Thomason J, Tintle NL, Wang D, Xia F, Yoo H, Yoo S, Yu D (2018) KBase: the United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 36:566–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. von Meijenfeldt FB, Arkhipova K, Cambuy DD et al (2019) Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol 20:217

    Article  CAS  Google Scholar 

  23. Hyatt D, Chen G-L, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59

    Article  PubMed  CAS  Google Scholar 

  25. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  26. Juottonen H, Galand P, Tuittila E et al (2005) Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557

    Article  CAS  PubMed  Google Scholar 

  27. Kim S-Y, Lee S-E, Freeman C et al (2008) Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Soil Biol Biochem 40:2874–2880

    Article  CAS  Google Scholar 

  28. Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    Article  CAS  Google Scholar 

  29. Beadle JM, Brown LE, Holden J (2015) Biodiversity and ecosystem functioning in natural bog pools and those created by rewetting schemes. WIREs Water 2:65–84

    Article  Google Scholar 

  30. Wilcox DA, Simonin HA (1988) The stratigraphy and development of a floating peatland, Pinhook Bog, Indiana. Wetlands 8:75–91

    Article  Google Scholar 

  31. Ivanova AA, Wegner C-E, Kim Y, Liesack W, Dedysh SN (2016) Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol Ecol 25:4818–4835

    Article  CAS  PubMed  Google Scholar 

  32. Dimitriu PA, Lee D, Grayston SJ (2010) An evaluation of the functional significance of peat microorganisms using a reciprocal transplant approach. Soil Biol Biochem 42:65–71

    Article  CAS  Google Scholar 

  33. Preston MD, Basiliko N (2016) Carbon mineralization in peatlands: does the soil microbial community composition matter? Geomicrobiol J 33:151–162

    Article  CAS  Google Scholar 

  34. Makiranta P, Laiho R, Fritze H et al (2009) Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol Biochem 41:695–703

    Article  CAS  Google Scholar 

  35. Pankratov TA, Dedysh SN, Zavarzin GA (2006) The leading role of Actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Dokl Biol Sci 410:428–430

    Article  CAS  PubMed  Google Scholar 

  36. Mannisto M, Ganzert L, Tjirola M et al (2016) Do shifts in life strategies explain microbial community responses to increasing nitrogen in tundra soil? Soil Biol Biochem 96:216–228

    Article  CAS  Google Scholar 

  37. Richardson RE (2016) Organohalide-respiring bacteria as members of microbial communities: catabolic food webs and biochemical interactions. In: Adrian L, Loffler F (eds) Organohalide-respiring bacteria. Springer, Berlin, Heidelberg, pp 309–341

    Chapter  Google Scholar 

  38. Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, Hoelzle RD, Lamberton TO, McCalley CK, Hodgkins SB, Wilson RM, Purvine SO, Nicora CD, Li C, Frolking S, Chanton JP, Crill PM, Saleska SR, Rich VI, Tyson GW (2018) Genome-centric view of carbon processing in thawing permafrost. Nature 560:49–54

    Article  CAS  PubMed  Google Scholar 

  39. St. James AR, Yavitt JB, Zinder SH, Richardson RE (2020) Linking microbial Sphagnum degradation and acetate mineralization in acidic peat bogs: from global insights to a genome-centric case study. ISME J 1–11. https://doi.org/10.1038/s41396-020-00782-0

  40. Warren MJ, Lin X, Gaby JC et al (2017) Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota. Appl Environ Microbiol 83:e01174–e01117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vile MA, Wieder RK, Zivkovic T et al (2014) N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328

    Article  CAS  Google Scholar 

  42. Berg A, Danielsson A, Svensson BH (2013) Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant Soil 362:271–278

    Article  CAS  Google Scholar 

  43. Larmola T, Leppanen SM, Tuittila E-S, Aarva M, Merila P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. PNAS 111:734–739

    Article  CAS  PubMed  Google Scholar 

  44. Vigneron A, Cruaud P, Bhiry N, Lovejoy C, Vincent WF (2019) Microbial community structure and methane cycling potential along a thermokarst pond-peatland continuum. Microorganisms 7:486

    Article  CAS  PubMed Central  Google Scholar 

  45. Xiang X, Wang R, Wang H, Gong L, Man B, Xu Y (2017) Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci Rep 7:45028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Evans PN, Parks DH, Chadwick GL et al (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science (80- ) 350:434–438

    Article  CAS  Google Scholar 

  47. Duddleston KN, Kinney MA, Kiene RP, Hines ME (2002) Anaerobic microbial biogeochemistry in a northern bog: acetate as a dominant metabolic end product. Glob Biogeochem Cycles 16:11-1–11-9

    Article  CAS  Google Scholar 

  48. Conrad R (2020) Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere 30:25–39

    Article  Google Scholar 

  49. Klavins M, Purmalis O (2013) Properties and structure of raised bog peat humic acids. J Mol Struct 1050:103–113

    Article  CAS  Google Scholar 

  50. Vasilevich R, Lodygin E, Beznosikov V, Abakumov E (2018) Molecular composition of raw peat and humic substances from permafrost peat soils of European Northeast Russia as climate change markers. Sci Total Environ 615:1229–1238

    Article  CAS  PubMed  Google Scholar 

  51. Walpen N, Getzinger GJ, Schroth MH, Sander M (2018) Electron-donating phenolic and electron-accepting quinone moieties in peat dissolved organic matter: quantities and redox transformations in the context of peat biogeochemistry. Environ Sci Technol 52:5236–5245

    Article  CAS  PubMed  Google Scholar 

  52. Keller JK, Takagi KK (2013) Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 4:1–12

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Joe Yavitt and Steve Zinder for helpful conversations regarding data interpretation and Don St. James for his help with the sampling efforts.

Funding

This work was funded by a Kieckhefer Adirondack Fellowship grant awarded to ARSJ through the College of Agriculture and Life Sciences at Cornell University.

Author information

Authors and Affiliations

Authors

Contributions

ARSJ and RER conceived of the study. ARSJ collected samples. JL processed samples for sequencing. ARSJ performed the bioinformatics and data analysis with assistance from JL. ARSJ wrote the manuscript with input from JL. ARSJ and RER edited the manuscript.

Corresponding author

Correspondence to Andrew R. St. James.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Supplementary Information

ESM 1

(XLSX 128 kb)

ESM 2

(DOCX 1438 kb)

ESM 3

(PDF 13 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

St. James, A.R., Lin, J. & Richardson, R.E. Relationship Between Peat Type and Microbial Ecology in Sphagnum-Containing Peatlands of the Adirondack Mountains, NY, USA. Microb Ecol 82, 429–441 (2021). https://doi.org/10.1007/s00248-020-01651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01651-1

Keywords

Navigation