Abstract
To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Lekshmi N, Joseph I, Ramamurthy T, Thomas S (2018) Changing facades of Vibrio cholerae: an enigma in the epidemiology of cholera. Indian J Med Res 147:133–141. https://doi.org/10.4103/ijmr.IJMR_280_17
Bhattacharya MK, Dutta D, Bhattacharya SK, Deb A, Mukhopadhyay AK, Nair GB, Shimada T, Takeda Y, Chowdhury A, Mahalanabis D (1998) Association of a disease approximating cholera caused by Vibrio cholerae of serogroups other than O1 and O139. Epidemiol Infect 120:1–5. https://doi.org/10.1017/s0950268897008352
Dalsgaard A, Forslund A, Bodhidatta L, Serichantalergs O, Pitarangsi C, Pang L, Shimada T, Echeverria P (1999) A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes. Epidemiol Infect 122:217–226. https://doi.org/10.1017/s0950268899002137
Sharma C, Thungapathra M, Ghosh A, Mukhopadhyay AK, Basu A, Mitra R, Basu I, Bhattacharya SK, Shimada T, Ramamurthy T, Takeda T, Yamasaki S, Takeda Y, Nair GB (1998) Molecular analysis of non-O1, non-O139 Vibrio cholerae associated with an unusual upsurge in the incidence of cholera-like disease in Calcutta, India. J Clin Microbiol 36:756–763. https://doi.org/10.1128/JCM.36.3.756-763.1998
Tobin-D'Angelo M, Smith AR, Bulens SN, Thomas S, Hodel M, Izumiya H, Arakawa E, Morita M, Watanabe H, Marin C, Parsons MB, Greene K, Cooper K, Haydel D, Bopp C, Yu P, Mintz E (2008) Severe diarrhea caused by cholera toxin-producing vibrio cholerae serogroup O75 infections acquired in the southeastern United States. Clin Infect Dis 47:1035–1040. https://doi.org/10.1086/591973
Petsaris O, Nousbaum JB, Quilici ML, Le Coadou G, Payan C, Abalain ML (2010) Non-O1, non-O139 Vibrio cholerae bacteraemia in a cirrhotic patient. J Med Microbiol 59:1260–1262. https://doi.org/10.1099/jmm.0.021014-0
Dutta D, Chowdhury G, Pazhani GP, Guin S, Dutta S, Ghosh S, Rajendran K, Nandy RK, Mukhopadhyay AK, Bhattacharya MK, Mitra U, Takeda Y, Nair GB, Ramamurthy T (2013) Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg Infect Dis 19:464–467. https://doi.org/10.3201/eid1903.121156
Hao Y, Wang Y, Bi Z, Sun B, Jin Y, Bai Y, Chen B, Shao C, Sun X, Lu Z (2015) A case of non-O1/non-O139 Vibrio cholerae septicemia and meningitis in a neonate. Int J Infect Dis 35:117–119. https://doi.org/10.1016/j.ijid.2015.05.004
Hasan NA, Rezayat T, Blatz PJ, Choi SY, Griffitt KJ, Rashed SM, Huq A, Conger NG, Colwell RR, Grimes DJ (2015) Nontoxigenic Vibrio cholerae non-O1/O139 isolate from a case of human gastroenteritis in the U.S. Gulf Coast. J Clin Microbiol 53:9–14. https://doi.org/10.1128/JCM.02187-14
Schwartz K, Hammerl JA, Gollner C, Strauch E (2019) Environmental and clinical strains of Vibrio cholerae non-O1, non-O139 from Germany possess similar virulence gene profiles. Front Microbiol 10:733. https://doi.org/10.3389/fmicb.2019.00733
Onifade TJ, Hutchinson R, Van Zile K, Bodager D, Baker R, Blackmore C (2011) Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011. Euro Surveill 16:19870
Chowdhury G, Joshi S, Bhattacharya S, Sekar U, Birajdar B, Bhattacharyya A, Shinoda S, Ramamurthy T (2016) Extraintestinal infections caused by non-toxigenic Vibrio cholerae non-O1/non-O139. Front Microbiol 7:144. https://doi.org/10.3389/fmicb.2016.00144
Dalsgaard A, Forslund A, Hesselbjerg A, Bruun B (2000) Clinical manifestations and characterization of extra-intestinal Vibrio cholerae non-O1, non-O139 infections in Denmark. Clin Microbiol Infect 6:625–627. https://doi.org/10.1046/j.1469-0691.2000.00174.x
Ko WC, Chuang YC, Huang GC, Hsu SY (1998) Infections due to non-O1 Vibrio cholerae in southern Taiwan: predominance in cirrhotic patients. Clin Infect Dis 27:774–780. https://doi.org/10.1086/514947
Maraki S, Christidou A, Anastasaki M, Scoulica E (2016) Non-O1, non-O139 Vibrio cholerae bacteremic skin and soft tissue infections. Infect Dis (Lond) 48:171–176. https://doi.org/10.3109/23744235.2015.1104720
Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, Ahsan S, Reeves PR, Nair GB, Lan R (2013) Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One 8:e65342. https://doi.org/10.1371/journal.pone.0065342
Li F, Du P, Li B, Ke C, Chen A, Chen J, Zhou H, Li J, Morris Jr JG, Kan B, Wang D (2014) Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China. Appl Environ Microbiol 80:4987–4992. https://doi.org/10.1128/AEM.01021-14
Walker E, Carpenter J, Plemmons R, Fader R (2010) Freshwater non-O1 Vibrio cholerae infection. South Med J 103:1061–1062. https://doi.org/10.1097/SMJ.0b013e3181efb938
Uchiyama H (2015) A study on the existence of Vibrio cholerae non-O1 in the river. Environ Health Prev Med 20:97–101. https://doi.org/10.1007/s12199-014-0430-6
Uchiyama H (1997) Survival of Vibrio cholerae non-O1 in freshwater river. Nihon Koshu Eisei Zasshi 44:547–557
Mulder GD, Ries TM, Beaver TR, Cover T (1989) Nontoxigenic Vibrio cholerae wound infection after exposure to contaminated lake water. J Infect Dis 159:809–811. https://doi.org/10.1093/infdis/159.4.809-a
West PA, Lee JV (1982) Ecology of Vibrio species, including Vibrio cholerae, in natural waters in Kent, England. J Appl Bacteriol 52:435–448. https://doi.org/10.1111/j.1365-2672.1982.tb05074.x
Almagro-Moreno S, Taylor RK (2014) Cholera: environmental reservoirs and impact on disease transmission. One Health:149–165. https://doi.org/10.1128/9781555818432.ch10
Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR (1998) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95:3134–3139. https://doi.org/10.1073/pnas.95.6.3134
Alam M, Rashed SM, Mannan SB, Islam T, Lizarraga-Partida ML, Delgado G, Morales-Espinosa R, Mendez JL, Navarro A, Watanabe H, Ohnishi M, Hasan NA, Huq A, Sack RB, Colwell RR, Cravioto A (2014) Occurrence in Mexico, 1998-2008, of Vibrio cholerae CTX+ El Tor carrying an additional truncated CTX prophage. Proc Natl Acad Sci U S A 111:9917–9922. https://doi.org/10.1073/pnas.1323408111
Faruque SM, Mekalanos JJ (2012) Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3:556–565. https://doi.org/10.4161/viru.22351
Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, Montgomery KT, Grills G, Kucherlapati R, Mekalanos JJ (2005) Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci U S A 102:3465–3470. https://doi.org/10.1073/pnas.0409918102
Shin OS, Tam VC, Suzuki M, Ritchie JM, Bronson RT, Waldor MK, Mekalanos JJ (2011) Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio 2:e00106–e00111. https://doi.org/10.1128/mBio.00106-11
Esteves K, Mosser T, Aujoulat F, Hervio-Heath D, Monfort P, Jumas-Bilak E (2015) Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons. Front Microbiol 6:708. https://doi.org/10.3389/fmicb.2015.00708
Vezzulli L, Baker-Austin C, Kirschner A, Pruzzo C, Martinez-Urtaza J (2020) Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ Microbiol 22:4342–4355. https://doi.org/10.1111/1462-2920.15040
Baker-Austin C, Trinanes J, Gonzalez-Escalona N, Martinez-Urtaza J (2017) Non-cholera Vibrios: the microbial barometer of climate change. Trends Microbiol 25:76–84. https://doi.org/10.1016/j.tim.2016.09.008
Schauer S, Jakwerth S, Bliem R, Baudart J, Lebaron P, Huhulescu S, Kundi M, Herzig A, Farnleitner AH, Sommer R, Kirschner A (2015) Dynamics of Vibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid-phase cytometry. Environ Microbiol 17:4366–4378. https://doi.org/10.1111/1462-2920.12861
Schirmeister F, Dieckmann R, Bechlars S, Bier N, Faruque SM, Strauch E (2014) Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur J Clin Microbiol Infect Dis 33:767–778. https://doi.org/10.1007/s10096-013-2011-9
Kirschner AK, Schlesinger J, Farnleitner AH, Hornek R, Süss B, Golda B, Herzig A, Reitner B (2008) Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality. Appl Environ Microbiol 74:2004–2015. https://doi.org/10.1128/aem.01739-07
Huhulescu S, Indra A, Feierl G, Stoeger A, Ruppitsch W, Sarkar B, Allerberger F (2007) Occurrence of Vibrio cholerae serogroups other than O1 and O139 in Austria. Wien Klin Wochenschr 119:235–241. https://doi.org/10.1007/s00508-006-0747-2
Jiang F, Bi R, Deng L, Kang H, Gu B, Ma P (2018) Virulence-associated genes and molecular characteristics of non-O1/non-O139 Vibrio cholerae isolated from hepatitis B cirrhosis patients in China. Int J Infect Dis 74:117–122. https://doi.org/10.1016/j.ijid.2018.06.021
Li XQ, Wang M, Deng ZA, Shen JC, Zhang XQ, Liu YF, Cai YS, Wu XW, Di B (2015) Survivability and molecular variation in Vibrio cholerae from epidemic sites in China. Epidemiol Infect 143:288–297. https://doi.org/10.1017/S0950268814000570
Fu S, Hao J, Jin S, Wu K, Wang Y, Ye S, Liu Y, Li R (2019) A human intestinal infection caused by a novel non-O1/O139 Vibrio cholerae genotype and its dissemination along the river. Front Public Health 7:100. https://doi.org/10.3389/fpubh.2019.00100
Luo Y, Ye J, Jin D, Ding G, Zhang Z, Mei L, Octavia S, Lan R (2013) Molecular analysis of non-O1/non-O139 Vibrio cholerae isolated from hospitalised patients in China. BMC Microbiol 13:52. https://doi.org/10.1186/1471-2180-13-52
Luo Y, Octavia S, Jin D, Ye J, Miao Z, Jiang T, Xia S, Lan R (2016) US Gulf-like toxigenic O1 Vibrio cholerae causing sporadic cholera outbreaks in China. J Inf Secur 72:564–572. https://doi.org/10.1016/j.jinf.2016.02.005
Nandi B, Nandy RK, Mukhopadhyay S, Nair GB, Shimada T, Ghose AC (2000) Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol 38:4145–4151. https://doi.org/10.1128/JCM.38.11.4145-4151.2000
CLSI (2016) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious Bacteria. Clinical and Laboratory Standards Institute, Wayne
Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA (2012) PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13:87. https://doi.org/10.1186/1471-2105-13-87
Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA, Vaz C (2017) PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 33:128–129. https://doi.org/10.1093/bioinformatics/btw582
T.H. J, C.R. C (1969) Evolution of protein molecules. In: H.N. M (ed.) Mammalian Protein Metabolism. Academic Press, New Tork, pp. 21–132
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155(2):945–959
Didelot X, Wilson DJ (2015) ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 11:e1004041. https://doi.org/10.1371/journal.pcbi.1004041
Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466. https://doi.org/10.1128/JCM.26.11.2465-2466.1988
Jutla A, Whitcombe E, Hasan N, Haley B, Akanda A, Huq A, Alam M, Sack RB, Colwell R (2013) Environmental factors influencing epidemic cholera. Am J Trop Med Hyg 89:597–607. https://doi.org/10.4269/ajtmh.12-0721
Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431, table of contents. https://doi.org/10.1128/MMBR.68.3.403-431.2004
Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris Jr JG, Khan MN, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR (2005) Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 71:4645–4654. https://doi.org/10.1128/AEM.71.8.4645-4654.2005
Vezzulli L, Grande C, Reid PC, Helaouet P, Edwards M, Hofle MG, Brettar I, Colwell RR, Pruzzo C (2016) Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A 113:E5062–E5071. https://doi.org/10.1073/pnas.1609157113
Alam MT, Weppelmann TA, Longini I, De Rochars VM, Morris Jr JG, Ali A (2015) Increased isolation frequency of toxigenic Vibrio cholerae O1 from environmental monitoring sites in Haiti. PLoS One 10:e0124098. https://doi.org/10.1371/journal.pone.0124098
Bompangue D, Vesenbeckh SM, Giraudoux P, Castro M, Muyembe JJ, Kebela Ilunga B, Murray M (2012) Cholera ante portas - the re-emergence of cholera in Kinshasa after a ten-year hiatus. PLoS Curr 4:RRN1310. https://doi.org/10.1371/currents.RRN1310
Reyburn R, Kim DR, Emch M, Khatib A, von Seidlein L, Ali M (2011) Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. Am J Trop Med Hyg 84:862–869. https://doi.org/10.4269/ajtmh.2011.10-0277
Rajendran K, Sumi A, Bhattachariya MK, Manna B, Sur D, Kobayashi N, Ramamurthy T (2011) Influence of relative humidity in Vibrio cholerae infection: a time series model. Indian J Med Res 133:138–145
Ceccarelli D, Chen A, Hasan NA, Rashed SM, Huq A, Colwell RR (2015) Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Appl Environ Microbiol 81:1909–1918. https://doi.org/10.1128/AEM.03540-14
Fykse EM, Skogan G, Davies W, Olsen JS, Blatny JM (2007) Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 73:1457–1466. https://doi.org/10.1128/AEM.01635-06
Shinoda S, Nakagawa T, Hirakawa N, Miyoshi S, Arakawa E, Ramamurthy T, Dutta B, Faruque SM, Nair GB (2008) Molecular epidemiological studies of Vibrio cholerae in Bengal region. Biocontrol Sci 13:1–8. https://doi.org/10.4265/bio.13.1
Singh DV, Matte MH, Matte GR, Jiang S, Sabeena F, Shukla BN, Sanyal SC, Huq A, Colwell RR (2001) Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl Environ Microbiol 67:910–921. https://doi.org/10.1128/AEM.67.2.910-921.2001
Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS (2017) Characterization and genetic variation of Vibrio cholerae isolated from clinical and environmental sources in Thailand. PLoS One 12:e0169324. https://doi.org/10.1371/journal.pone.0169324
Pretzer C, Druzhinina IS, Amaro C, Benediktsdottir E, Hedenstrom I, Hervio-Heath D, Huhulescu S, Schets FM, Farnleitner AH, Kirschner AK (2017) High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ Microbiol 19:328–344. https://doi.org/10.1111/1462-2920.13612
Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530. https://doi.org/10.1128/jb.186.5.1518-1530.2004
Francisco AP, Bugalho M, Ramirez M, Carrico JA (2009) Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 10:152. https://doi.org/10.1186/1471-2105-10-152
Laviad-Shitrit S, Izhaki I, Halpern M (2019) Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog 15:e1007814. https://doi.org/10.1371/journal.ppat.1007814
Fu S, Hao J, Yang Q, Lan R, Wang Y, Ye S, Liu Y, Li R (2019) Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: a potential threat to the public health. Sci Rep 9:16303. https://doi.org/10.1038/s41598-019-52791-5
Liang KYH, Orata FD, Islam MT, Nasreen T, Alam M, Tarr CL, Boucher YF (2020) A Vibrio cholerae Core genome multilocus sequence typing scheme to facilitate the epidemiological study of cholera. J Bacteriol: JB.00086–00020. https://doi.org/10.1128/JB.00086-20
Salim A, Lan R, Reeves PR (2005) Vibrio cholerae pathogenic clones. Emerg Infect Dis 11:1758–1760. https://doi.org/10.3201/eid1111.041170
Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. mBio 2:e00335–e00310. https://doi.org/10.1128/mBio.00335-10
Feng L, Reeves PR, Lan R, Ren Y, Gao C, Zhou Z, Ren Y, Cheng J, Wang W, Wang J, Qian W, Li D, Wang L (2008) A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS One 3:e4053. https://doi.org/10.1371/journal.pone.0004053
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Lepuschitz S, Baron S, Larvor E, Granier SA, Pretzer C, Mach RL, Farnleitner AH, Ruppitsch W, Pleininger S, Indra A, Kirschner AKT (2019) Phenotypic and genotypic antimicrobial resistance traits of Vibrio cholerae non-O1/non-O139 isolated from a large Austrian Lake frequently associated with cases of human infection. Front Microbiol 10:2600. https://doi.org/10.3389/fmicb.2019.02600
Bina RF, Bina JE, Weng Y (2020) Genome sequence of Vibrio cholerae strain RFB16, isolated from North Park Lake in Allegheny County, Pennsylvania. Microbiol Resour Announc 9. https://doi.org/10.1128/mra.00111-20
Hounmanou YMG, Leekitcharoenphon P, Hendriksen RS, Dougnon TV, Mdegela RH, Olsen JE, Dalsgaard A (2019) Surveillance and genomics of toxigenic Vibrio cholerae O1 from fish, phytoplankton and water in Lake Victoria, Tanzania. Front Microbiol 10:901. https://doi.org/10.3389/fmicb.2019.00901
Jesser KJ, Noble RT (2018) Vibrio ecology in the Neuse River estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl Environ Microbiol 84. https://doi.org/10.1128/aem.00333-18
Orata FD, Kirchberger PC, Méheust R, Barlow EJ, Tarr CL, Boucher Y (2015) The dynamics of genetic interactions between Vibrio metoecus and Vibrio cholerae, two close relatives co-occurring in the environment. Genome Biol Evol 7:2941–2954. https://doi.org/10.1093/gbe/evv193
Bhuyan SK, Vairale MG, Arya N, Yadav P, Veer V, Singh L, Yadava PK, Kumar P (2016) Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India. Infect Genet Evol 40:352–356. https://doi.org/10.1016/j.meegid.2015.11.029
Bliem R, Reischer G, Linke R, Farnleitner A, Kirschner A (2018) Spatiotemporal dynamics of Vibrio cholerae in turbid alkaline lakes as determined by quantitative PCR Appl Environ Microbiol 84. https://doi.org/10.1128/aem.00317-18
Deter J, Lozach S, Derrien A, Véron A, Chollet J, Hervio-Heath D (2010) Chlorophyll a might structure a community of potentially pathogenic culturable Vibrionaceae. Insights from a one-year study of water and mussels surveyed on the French Atlantic coast. Environ Microbiol Rep 2:185–191. https://doi.org/10.1111/j.1758-2229.2010.00133.x
Kaboré S, Cecchi P, Mosser T, Toubiana M, Traoré O, Ouattara AS, Traoré AS, Barro N, Colwell RR, Monfort P (2018) Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 169:1–10. https://doi.org/10.1016/j.resmic.2017.08.004
Laverty AL, Primpke S, Lorenz C, Gerdts G, Dobbs FC (2020) Bacterial biofilms colonizing plastics in estuarine waters, with an emphasis on Vibrio spp. and their antibacterial resistance. PLoS One 15:e0237704. https://doi.org/10.1371/journal.pone.0237704
Mavian C, Paisie TK, Alam MT, Browne C, Beau De Rochars VM, Nembrini S, Cash MN, Nelson EJ, Azarian T, Ali A, Morris Jr JG, Salemi M (2020) Toxigenic Vibrio cholerae evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci U S A 117:7897–7904. https://doi.org/10.1073/pnas.1918763117
Robert-Pillot A, Baron S, Lesne J, Fournier JM, Quilici ML (2002) Improved specific detection of Vibrio cholerae in environmental water samples by culture on selective medium and colony hybridization assay with an oligonucleotide probe. FEMS Microbiol Ecol 40:39–46. https://doi.org/10.1111/j.1574-6941.2002.tb00934.x
Esteves K, Hervio-Heath D, Mosser T, Rodier C, Tournoud MG, Jumas-Bilak E, Colwell RR, Monfort P (2015) Rapid proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during freshwater flash floods in French Mediterranean coastal lagoons. Appl Environ Microbiol 81:7600–7609. https://doi.org/10.1128/aem.01848-15
Daboul J, Weghorst L, DeAngelis C, Plecha SC, Saul-McBeth J, Matson JS (2020) Characterization of Vibrio cholerae isolates from freshwater sources in Northwest Ohio. PLoS One 15:e0238438. https://doi.org/10.1371/journal.pone.0238438
Bwire G, Debes AK, Orach CG, Kagirita A, Ram M, Komakech H, Voeglein JB, Buyinza AW, Obala T, Brooks WA, Sack DA (2018) Environmental surveillance of Vibrio cholerae O1/O139 in the five African Great Lakes and other major surface water sources in Uganda. Front Microbiol 9:1560. https://doi.org/10.3389/fmicb.2018.01560
Funding
This research was funded by the Key Technology Research and Development Program of Shandong (2019JZZY011018). Yun Luo is a PhD student supported through Australian Government Research Training Program Scholarship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Luo, Y., Wang, H., Liang, J. et al. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. Microb Ecol 82, 319–333 (2021). https://doi.org/10.1007/s00248-020-01645-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00248-020-01645-z


