Skip to main content
Log in

Inter-trophic Interaction of Gut Microbiota in a Tripartite System

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Gut microbiota can be transmitted either environmentally or socially and vertically at intraspecific level; however, whether gut microbiota interact along trophic levels has been largely overlooked. Here, we characterized the gut bacterial communities of weevil larvae of Curculio arakawai that infest acorns of Mongolian oak (Quercus mongolica) as well as acorn-eating mammals, Siberian chipmunk (Tamias sibiricus), to test whether consumption of seed-borne larvae remodels the gut bacterial communities of T. sibiricus. Ingestion of weevil larvae of C. arakawai significantly altered the gut bacterial communities of T. sibiricus. Consequently, T. sibiricus fed larvae of C. arakawai showed higher capability to counter the negative effects of tannins, in terms of body weight maintenance, acorn consumption, N content in feces, urine pH, and blood ALT activity. Our results may first show that seed-borne insects as hidden players have a potential to alter the gut microbiota of seed predators in the tripartite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF (2013) Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79:3468–3475

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams AS, Boone CK, Bohlmann J, Raffa KF (2011) Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. J Chem Ecol 37:808–817

    CAS  PubMed  Google Scholar 

  3. Aguilar CN, Rodríguez R, Gutiérrez-Sánchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramírez-Coronel A, Contreras-Esquivel JC (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59

    CAS  PubMed  Google Scholar 

  4. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538

    CAS  PubMed  Google Scholar 

  5. Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan SH, Flint HJ, O'Neal L, Lawson PA (2012) Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe 18:523–529

    PubMed  Google Scholar 

  6. Arpaia N, Campbell C, Fan X, Dikiy S et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504:451–455

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Belur PD, Mugeraya G (2011) Microbial production of tannase: state of the art. Res J Microbiol 6:25–40

    CAS  Google Scholar 

  9. Berasategui A, Axelsson K, Nordlander G, Schmidt A, Borg-Karlson AK, Gershenzon J, Terenius O, Kaltenpoth M (2016) The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles. Mol Ecol 25:4014–4031

    CAS  PubMed  Google Scholar 

  10. Berasategui A, Salem H, Paetz C, Santoro M, Gershenzon J, Kaltenpoth M, Schmidt A (2017) Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol Ecol 26:4099–4110

    CAS  PubMed  Google Scholar 

  11. Blaser MJ, Falkow S (2009) What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 7:887–894

    CAS  PubMed  Google Scholar 

  12. Bogdziewicz M, Bonal R, Espelta JM, Kalemba EM, Steele MA, Zwolak R (2018) Invasive oaks escape pre-dispersal insect seed predation and trap enemies in their seeds. Integr Zool 13:225–234

    Google Scholar 

  13. Bonal R, Muñoz A, Díaz M (2007) Satiation of predispersal seed predators: the importance of considering both plant and seed levels. Evol Ecol 21:367–380

    Google Scholar 

  14. Bonal R, Muňoz A (2008) Negative consequences of premature seed abscission on insect performance: acorn growth suppression constrains Curculio elephas larval size. Ecol Entomol 33:31–36

    Google Scholar 

  15. Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39:1003–1006

    CAS  PubMed  Google Scholar 

  16. Branco M, Branco C, Merouani H, Almeida MH (2002) Germination success, survival and seedling vigour of Quercus suber acorns in relation to insect damage. For Ecol Manag 166:159–164

    Google Scholar 

  17. Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN (2017) Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol 62:1–9

    CAS  Google Scholar 

  18. Cao L, Guo C, Chen J (2017) Fluctuation in seed abundance has contrasting effects on the fate of seeds from two rapidly germinating tree species in an Asian tropical forest. Integr Zool 12:2–11

    PubMed  Google Scholar 

  19. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang G, Jin TZ, Pei JF, Chen XN, Zhang B, Shi ZJ (2012) Seed dispersal of three sympatric oak species by forest rodents in the Qinling Mountains, Central China. Plant Ecol 213:1633–1642

    Google Scholar 

  21. Cheng J, Zhang H (2011) Seed-hoarding of Edward’s long-tailed rats Leopoldamys edwardsi in response to weevil infestation in cork oak Quercus variabilis. Curr Zool 57:50–55

    Google Scholar 

  22. Cody WL, Wilson JW, Hendrixson DR, Mclver KS, Wagman KE, Ott CM, Nickerson CA, Schurr MJ (2008) Skim milk enhances the preservation of thawed -80 C bacterial stocks. J Microbiol Methods 75:135–138

    PubMed  PubMed Central  Google Scholar 

  23. Crespo MJ, Abarca ML, Cabanes FJ (2000) Evaluation of different preservation and storage methods for Mallassezia spp. J Clin Microbiol 38:3872–3875

    CAS  PubMed  PubMed Central  Google Scholar 

  24. den Ouden J, Jansen PA, Smit R (2003) Jays, mice and oaks: predation and dispersal of Quercus robur and Q. petraea in North-Western Europe. In: Forget PM, Lambert JE, Hulme PE, Vander Wall SB (eds) Seed fate: Predation, dispersal, and seedling establishment. CABI Publishing, Wallingford, pp 223–240

  25. Deschamps AM (1983) Production of tannase and degradation of chestnut tannin by bacteria. J Ferment Technol 61:55–59

    CAS  Google Scholar 

  26. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    CAS  PubMed  Google Scholar 

  27. Dixon MD, Johnson WC, Adkisson CS (1997) Effects of weevil larvae on acorn use by blue jays. Oecologia 111:201–208

    PubMed  Google Scholar 

  28. Dong Z, Cao L, Yi X (2012) Adaptive strategies of weevil larvae in the superparasitized acorns of the oriental white oak, Quercus aliena (Fagaceae). Acta Entomol Sin 55:825–831

    Google Scholar 

  29. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47

    Google Scholar 

  30. Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ (2002) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52:1615–1620

    CAS  PubMed  Google Scholar 

  31. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    CAS  PubMed  Google Scholar 

  32. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Engel P, Moran NA (2013) The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev 37:699–735

    CAS  PubMed  Google Scholar 

  34. Espelta JM, Cortés P, Molowny-Horas R, Retana J (2009) Acorn crop size and pre-dispersal predation determine inter-specific differences in the recruitment of co-occurring oaks. Oecologia 161:559–568

    PubMed  Google Scholar 

  35. Espelta JM, Cortés P, Molowny-Horas R, Sánchez-Humanes B, Retana J (2008) Masting mediated by summer drought reduces acorn predation in mediterranean oak forests. Ecology 89:805–817

    PubMed  Google Scholar 

  36. Femi-Ola TO, Babalola AG (2012) Microbiology of the gut of the kola nut weevil, Balanogastris kolae. J Insect Sci 12:1–6

    Google Scholar 

  37. Foley WJ, McLean S, Cork SJ (1995) Consequences of biotransformation of plant secondary metabolites on acid-base metabolism in mammals—a final common pathway? J Chem Ecol 21:721–743

    CAS  PubMed  Google Scholar 

  38. Fukumoto H, Kajimura H (2005) Cumulative effects of mortality factors on reproductive output in two co-occurring Quercus species: which mortality factors most strongly reduce reproductive potential? Can J Bot 83:1151–1158

    Google Scholar 

  39. Gálvez D, Jansen PA (2007) Bruchid beetle infestation and the value of Attalea butyracea endocarps for neotropical rodents. J Trop Ecol 23:381–384

    Google Scholar 

  40. Gorman R, Adley CCN (2004) An evolution of five preservation techniques and conventional freezing temperatures of -20 C and -85 C for long term preservation of Campylobacter jejuni. Lett Appl Microbiol 38:306–310

    CAS  PubMed  Google Scholar 

  41. Guo S, Yi X (2017) Gut bacterial composition of two Curculio species and their adaptation to high-tannin food. Acta Microbiol Sin 59:657–667

  42. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methe B, DeSantis TZ, The Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16s rRNA sequence formation and detection in Sanger and 454-pyrosequenced pcr amplicons. Genome Res 21:494–450

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hammer TJ, Bower MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14

    PubMed  Google Scholar 

  44. Higaki M (2016) Prolonged diapause and seed predation by the acorn weevil, Curculio robustus, in relation to masting of the deciduous oak Quercus acutissima. Entomol Exp Appl 159:338–346

    Google Scholar 

  45. Jiménez N, Barcenilla JM, De Felipe FL, De Las RB, Muñoz R (2014) Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Appl Microbiol Biotechnol 98:6329–6337

    PubMed  Google Scholar 

  46. Johnson WC, Thomas L, Adkisson CS (1993) Dietary circumvention of acorn tannins by blue jays. Implications for oak demography. Oecologia 94:159–164

    PubMed  Google Scholar 

  47. Kellner KF, Riegel JK, Lichti NI, Swihart RK (2013) Oak mast production and animal impacts on acorn survival in the Central Hardwoods. In: Swihart RK, Saunders MR, Kalb RA, Haulton GS, Michler CH (eds) The hardwood ecosystem experiment: a framework for studying responses to forest management. Gen Tech Rep. NRS-P-108. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square pp 176–190

  48. Kohl KD, Dearing MD (2012) Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol Lett 15:1008–1015

    PubMed  Google Scholar 

  49. Kohl KD, Dearing MD (2014) Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ Microbiol Rep 6:191–195

    PubMed  Google Scholar 

  50. Kohl KD, Stengel A, Dearing MD (2016) Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol 18:1720–1729

    CAS  PubMed  Google Scholar 

  51. Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD (2014) Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17:1238–1246

    PubMed  Google Scholar 

  52. Kohl KD, Weiss RB, Dale C, Dearing MD (2011) Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis 54:47–54

    Google Scholar 

  53. Li H, Zhang Z (2003) Effect of rodents on acorn dispersal and survival of the Liaodong oak (Quercus liaotungensis Koidz.). For Ecol Manag 176:387–396

    Google Scholar 

  54. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10

    Google Scholar 

  55. Mangione AM, Dearing D, Karasov W (2001) Detoxification in relation to toxin tolerance in desert woodrats eating creosote bush. J Chem Ecol 27:2559–2578

    CAS  PubMed  Google Scholar 

  56. Merville A, Venner S, Henri H, Vallier A, Menu F, Vavre F, Heddi A, Bel-Venner MC (2013) Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evol Biol 13:28

    PubMed  PubMed Central  Google Scholar 

  57. Morales-Jiménez J, Zúñiga G, Ramírez-Saa HC, Hernández-Rodríguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64:268–278

    PubMed  Google Scholar 

  58. Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891

    PubMed  Google Scholar 

  59. Mukherjee A, Bhanwar S, Ganguli A (2014) Characterization of tannase production by Lactococcus lactis subsp lactis and its potential in enhancing nutritional value of a composite sourdough. Int J Genet Eng Biotechnol 5:77–84

    Google Scholar 

  60. Muñoz A, Bonal R (2008) Seed choice by rodents: learning or inheritance? Behav Ecol Sociobiol 62:913–922

    Google Scholar 

  61. Noguchi N, Ohashi T, Shiratori T, Narui K, Hagiwara T, Ko M, Watanabe K, Miyahara T, Taira S, Moriyasu F, Sasatsu M (2007) Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. J Gastroenterol 42:346–351

    CAS  PubMed  Google Scholar 

  62. Olejníková P, Kaszonyi A, Šimkovič M, Lakatoš B, Kaliňák M, Valachovičová M, Birošová L (2017) Differences in gut microbiota activity (antimicrobials, potential mutagens, and sterols) according to diet. Acta Aliment 46:61–68

    Google Scholar 

  63. Onodera R, Akimoto Y, Shimada T, Saitoh T (2017) Different population responses of three sympatric rodent species to acorn masting—the role of tannin tolerance. Popul Ecol 59:29–43

    Google Scholar 

  64. Osawa R, Fujisawa T (2017) Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. Int J Syst Evol Microbiol 56:1693–1696

    Google Scholar 

  65. Osawa R, Kuroiso K, Goto S, Shimizu A (2000) Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl Environ Microbiol 66:3093–3097

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Osawa R, Mitsuoka T (1990) Selective medium for enumeration of tannin-protein complex-degrading Streptococcus spp. in feces of koalas. Appl Environ Microbiol 56:3609–3611

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Palani SN, Elangovan S, Menon A, Kumariah M, Tennyson J (2019) An efficient nucleic acids extraction protocol for elettaria cardamomum. Biocatal Agric Biotechnol 17:207–212

    Google Scholar 

  68. Pepi M, Lampariello LR, Altieri R, Esposito A, Perra G, Renzi M, Lobianco A, Feola A, Gasperini S, Focardi SE (2010) Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures. Int Biodeterior Biodegrad 64:73–80

    CAS  Google Scholar 

  69. Perea R, López D, Miguel AS, Gil L (2012a) Incorporating insect infestation into rodent seed dispersal: better if the larva is still inside. Oecologia 170:723–733

    PubMed  Google Scholar 

  70. Perea R, Miguel AS, Martínez-Jauregui M, Valbuena-Carabaña M, Gil L (2012b) Effects of seed quality and seed location on the removal of acorns and beechnuts. Eur J For Res 131:623–631

    Google Scholar 

  71. Peter WA, John RP, Kumar P, Thomas S (2009) Tannin acyl hydrolase production by Citrobacter sp. isolated from tannin rich environment, using Tamarindus indica seed powder. J Appl Sci Environ Manag 13:95–97

    Google Scholar 

  72. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    CAS  PubMed  Google Scholar 

  73. Pulido FJ, Díaz M (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. Écoscience 12:92–102

    Google Scholar 

  74. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Google Scholar 

  75. Rinke R, Costa AS, Fonseca FPP, Almeida LC, Delalibera I, Henrique-Silva F (2011) Microbial diversity in the larval gut of field and laboratory populations of the sugarcane weevil Sphenophorus levis (Coleoptera, Curculionidae). Genet Mol Res 10:2679–2691

    CAS  PubMed  Google Scholar 

  76. Roehrig NE, Capinera JL (1983) Behavioural and developmental responses of range caterpillar larvae, Hemileuca oliviae, to condensed tannin. J Insect Physiol 29:901–906

    CAS  Google Scholar 

  77. Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E (2005) Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst Appl Microbiol 28:358–365

    PubMed  Google Scholar 

  78. Segata N, Izard J, Waldron L, Gevers D, Miropolsk L, Wendy SG, Curtis H (2010) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18

    Google Scholar 

  79. Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK (2010) Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J Microbiol Biotechnol 26:599–605

    CAS  Google Scholar 

  80. Semel B, Anderson DC (1988) Vulnerability of acorn weevils (Coleoptera: Curculionidae) and attractiveness of weevils and infested Quercus alba acorns to Peromyscus leucopus and Blarina brevicauda. Am Midl Nat 119:385–393

    Google Scholar 

  81. Sharma KP, John PJ (2011) Purification and characterization of tannase and tannase gene from Enterobacter sp. Process Biochem 46:240–244

    CAS  Google Scholar 

  82. Shimada T, Nishii E, Saitoh T (2011) Interspecific differences in tannin intakes of forest-dwelling rodents in the wild revealed by a new method using fecal proline content. J Chem Ecol 37:1277–1284

    CAS  PubMed  Google Scholar 

  83. Shimada T, Saitoh T, Sasaki E, Nishitani Y, Osawa R (2006) Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. J Chem Ecol 32:1165–1180

    CAS  PubMed  Google Scholar 

  84. Singh B, Chaudhary LC, Agarwal N, Kamra DN (2011) Phenotypic and phylogenetic characterisation of tannin degrading/tolerating bacterial isolates from the rumen of goats fed on pakar (Ficus infectoria) leaves. J Appl Anim Res 39:120–124

    CAS  Google Scholar 

  85. Smallwood PD, Steele MA, Faeth SH (2001) The ultimate basis of the caching preferences of rodents, and the oak-dispersal syndrome: tannins, insects, and seed germination. Am Zool 41:840–851

    Google Scholar 

  86. Smirnova DV, Zalomova LV, Zagainova AV, Makarov VV, Yudin SM (2019) Cryopreservation of the human gut microbiota: current state and perspectives. Int J Med Microbiol 309:259–269

    CAS  PubMed  Google Scholar 

  87. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sork VL, Boucher DH (1977) Dispersal of sweet pignut hickory in a year of low fruit production, and the influence of predation by a Curculionid beetle. Oecologia 28:289–299

    PubMed  Google Scholar 

  89. Steele MA, Contreras TA, Hadj-Chikh LZ, Agosta SJ, Smallwood PD, Tomlinson CN (2014) Do scatter hoarders trade off increased predation risks for lower rates of cache pilferage? Behav Ecol 25:206–215

    Google Scholar 

  90. Steele MA, Hadj-Chikh LZ, Hazeltine J (1996) Caching and feeding decisions by Sciurus carolinensis: responses to weevil-infested acorns. J Mammal 77:305–314

    Google Scholar 

  91. Steele MA, Rompré G, Stratford JA, Zhang H, Suchocki M, Marino S (2015) Scatterhoarding rodents favor higher predation risks for cache sites: the potential for predators to influence the seed dispersal process. Integr Zool 10(3):257–266

    PubMed  Google Scholar 

  92. Sanfilippo A, Lewin RA (1970) Preservation of viable flexibacteria at low temperatures. Can J Microbiol 16:441–444

    CAS  PubMed  Google Scholar 

  93. Tamir M, Alumot E (1970) Carob tannins-growth depression and levels of insoluble nitrogen in the digestive tract of rats. J Nutr 100:573–580

    CAS  PubMed  Google Scholar 

  94. Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20:853–868

    PubMed  Google Scholar 

  95. Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, Kimura N, Fukatsu T (2010) Candidatus Curculioniphilus buchneri, a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol 76:275–282

    CAS  PubMed  Google Scholar 

  96. Toju H, Tanabe AS, Notsu Y, Sota T, Fukatsu T (2013) Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME J 7:1378–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tsai CG, Gates DM, Ingledew WM, Jones GA (1976) Products of anaerobic phloroglucinol degradation by Coprococcus sp. Pe15. Can J Microbiol 22:159–164

    CAS  PubMed  Google Scholar 

  98. Vander Wall SB, Balda RP (1977) Coadaptations of the Clark’s nutcracker and the pinyon pine for efficient seed harvest and dispersal. Ecol Monogr 47:89–111

    Google Scholar 

  99. Wang X, Xiao Z, Zhang Z, Pan H (2008) Insect seed predation and its relationships with seed crop and seed size of Quercus mongolica. Acta Theriol Sin 51:161–165

    Google Scholar 

  100. Wang Z, Zhang Y, Zhang D, Li J, Yi X (2016) Nutritional and defensive properties of Fagaceae nuts dispersed by animals: a multiple species study. Eur J For Res 135:911–917

    CAS  Google Scholar 

  101. Weckerly FW, Nicholson KE, Semlitsch RD (1989) Experimental test of discrimination by squirrels for insect-infested and noninfested acorns. Am Midl Nat 122:412–415

    Google Scholar 

  102. WrÓbel A, Zwolak R (2017) Deciphering the effects of disperser assemblages and seed mass on patterns of seed dispersal in a rodent community. Integr Zool 12:457–467

    PubMed  Google Scholar 

  103. Xiao Z, Zhang Z, Wang Y (2003) The ability to discriminate weevil-infested nuts by rodents: potential effects on regeneration of nut-bearing plants. Acta Theriol Sin 23:312–320

    Google Scholar 

  104. Xu L, Lou Q, Cheng C, Lu M, Sun J (2015) Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb Ecol 70:1012–1023

    CAS  PubMed  Google Scholar 

  105. Xu L, Lu M, Xu D, Chen L, Sun J (2016b) Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production. J Insect Physiol 95:110–117

    CAS  PubMed  Google Scholar 

  106. Xu L, Shi Z, Wang B, Lu M, Sun J (2016c) Pine defensive monoterpene α-pinene influences the feeding behavior of Dendroctonus valens and its gut bacterial community structure. Int J Mol Sci 17:1734

    PubMed Central  Google Scholar 

  107. Xu LT, Lu M, Sun JH (2016a) Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci 23:183–190

    CAS  PubMed  Google Scholar 

  108. Yang Y, Yi X, Yu F (2012) Repeated radicle pruning of Quercus mongolica acorns as a cache management tactic of Siberian chipmunks. Acta Ethol 15:9–14

    Google Scholar 

  109. Yi X, Steele MA, Zhang Z (2012) Acorn pericarp removal as a cache management strategy of the Siberian chipmunk, Tamias sibiricus. Ethology 118:87–94

    Google Scholar 

  110. Yu F, Shi X, Wang D, Yi X, Fan D, Guo T, Lou Y (2015) Effects of insect infestation on Quercus aliena var. acuteserrata acorn dispersal in the Qinling Mountains, China. New For 46:51–61

    Google Scholar 

  111. Yu X, Zhou H, Luo T (2003) Spatial and temporal variations in insect-infested acorn fall in a Quercus liaotungensis forest in North China. Ecol Res 18:155–164

    Google Scholar 

  112. Zhang Y, Bartlow AW, Wang Z, Yi X (2018) Effects of seed tannin on population dynamics of sympatric mast-eating rodents: the potential role of gut tannin-degrading bacteria. Oecologia 187:667–678

    PubMed  Google Scholar 

  113. Zhu J, Filippic LJ, Alsalami MT (1992) Tannic acid intoxication in sheep and mice. Res Vet Sci 53:280–292

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to give thanks to Dr. Xihua Zhao, Shunbao Lu, Xiaomei Sha, and Zhenxing Wang for facilitating the analyses of fecal N and blood samples.

Data Accessibility

Data are deposited in Qufu Normal University and are accessible if requested.

Funding

This study was supported by the National Natural Science Foundation of China (32070447 and 31760156) and the Young Talents Invitation Program of Shandong Provincial Colleges and Universities (20190601).

Author information

Authors and Affiliations

Authors

Contributions

XY conceived and designed the study. MW and CX carried out the experiments. JG and MJ performed data analyses. XY wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

Corresponding author

Correspondence to Xianfeng Yi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Supplementary Information

ESM 1

(DOCX 1138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Guo, J., Wang, M. et al. Inter-trophic Interaction of Gut Microbiota in a Tripartite System. Microb Ecol 81, 1075–1087 (2021). https://doi.org/10.1007/s00248-020-01640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01640-4

Keywords

Navigation