Skip to main content

Scale-Dependent Influences of Distance and Vegetation on the Composition of Aboveground and Belowground Tropical Fungal Communities

Abstract

Fungi provide essential ecosystem services and engage in a variety of symbiotic relationships with trees. In this study, we investigate the spatial relationship of trees and fungi at a community level. We characterized the spatial dynamics for above- and belowground fungi using a series of forest monitoring plots, at nested spatial scales, located in the tropical South Pacific, in Vanuatu. Fungal communities from different habitats were sampled using metagenomic analysis of the nuclear ribosomal ITS1 region. Fungal communities exhibited strong distance–decay of similarity across our entire sampling range (3–110,000 m) and also at small spatial scales (< 50 m). Unexpectedly, this pattern was inverted at an intermediate scale (3.7–26 km). At large scales (80–110 km), belowground and aboveground fungal communities responded inversely to increasing geographic distance. Aboveground fungal community turnover (beta diversity) was best explained, at all scales, by geographic distance. In contrast, belowground fungal community turnover was best explained by geographic distance at small scales and tree community composition at large scales. Fungal communities from various habitats respond differently to the influences of habitat and geographic distance. At large geographic distances (80–110 km), community turnover for aboveground fungi is better explained by spatial distance, whereas community turnover for belowground fungi is better explained by plant community turnover. Future syntheses of spatial dynamics among fungal communities must explicitly consider geographic scale to appropriately contextualize community turnover.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of Data and Material (Data Transparency)

The sequencing dataset analyzed during the current study is available in the NCBI Sequence Read Archive. (BioProject ID PRJNA634909). Tree community and transect data are available from Figshare (doi https://doi.org/10.6084/m9.figshare.12367475).

References

  1. 1.

    Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

    PubMed  Article  Google Scholar 

  2. 2.

    Schimann H, Bach C, Lengelle J, Louisanna E, Barantal S, Murat C, Buée M (2016) Diversity and structure of fungal communities in Neotropical rainforest soils: the effect of host recurrence. Microb Ecol 73:1–11. https://doi.org/10.1007/s00248-016-0839-0

    Article  Google Scholar 

  3. 3.

    Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88. https://doi.org/10.1038/nature12911

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Van Der Heijden MGA, Boller T, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential. Ecology 79:2082–2091

    Article  Google Scholar 

  5. 5.

    Nacke H, Goldmann K, Schöning I, Pfeiffer B, Kaiser K, Castillo-Villamizar GA, Schrumpf M, Buscot F, Daniel R, Wubet T (2016) Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.02067

  6. 6.

    Hawksworth DL, Lücking R (2017) Fungal Diversity Revisited : 2 . 2 to 3 . 8 Million Species:1–17. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016.Correspondence

  7. 7.

    Pimm SL, Joppa LN (2015) How many plant species are there, where are they, and at what rate are they going extinct? Ann Missouri Bot Gard 100:170–176. https://doi.org/10.3417/2012018

    Article  Google Scholar 

  8. 8.

    Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  9. 9.

    Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, Valencia R, Green JL (2008) A general framework for the distance-decay of similarity in ecological communities. Ecol Lett 11:904–917. https://doi.org/10.1111/j.1461-0248.2008.01202.x

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Nekola JC, White PS, Biogeography J et al (2007) Special Paper: The distance decay of similarity in biogeography and ecology the distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  11. 11.

    Condit R, Pitman N, Leigh EG et al (2002) Beta-diversity in tropical forest trees. Science 295(80):666–669. https://doi.org/10.1126/science.1066854

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Astorga A, Oksanen J, Luoto M, Soininen J, Virtanen R, Muotka T (2012) Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Glob Ecol Biogeogr 21:365–375. https://doi.org/10.1111/j.1466-8238.2011.00681.x

    Article  Google Scholar 

  13. 13.

    Monroy F, van der Putten WH, Yergeau E, Mortimer SR, Duyts H, Bezemer TM (2012) Community patterns of soil bacteria and nematodes in relation to geographic distance. Soil Biol Biochem 45:1–7. https://doi.org/10.1016/j.soilbio.2011.10.006

    CAS  Article  Google Scholar 

  14. 14.

    Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S (2012) Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamrix trees across the sonoran desert. Appl Environ Microbiol 78:6187–6193. https://doi.org/10.1128/AEM.00888-12

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Qvit-Raz N, Finkel OM, Al-Deeb TM et al (2012) Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region. Res Microbiol 163:142–150. https://doi.org/10.1016/j.resmic.2011.11.006

    PubMed  Article  Google Scholar 

  16. 16.

    Bell T (2010) Experimental tests of the bacterial distance-decay relationship. ISME J 4:1357–1365. https://doi.org/10.1038/ismej.2010.77

    PubMed  Article  Google Scholar 

  17. 17.

    Yavitt JB, Yashiro E, Cadillo-Quiroz H, Zinder SH (2012) Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry 109:117–131. https://doi.org/10.1007/s10533-011-9644-5

    CAS  Article  Google Scholar 

  18. 18.

    Saleem M, Pervaiz ZH, Traw MB (2015) Theories, mechanisms and patterns of microbiome species coexistence in an era of climate change. Microbiome community ecology: fundamentals and applications. Springer International Publishing, Cham, pp 13–53

    Google Scholar 

  19. 19.

    Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854. https://doi.org/10.1073/pnas.1016308108

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Vaz ABM, Fontenla S, Rocha FS, Brandão LR, Vieira MLA, de Garcia V, Góes-Neto A, Rosa CA (2014) Fungal endophyte β-diversity associated with Myrtaceae species in an Andean Patagonian forest (Argentina) and an Atlantic forest (Brazil). Fungal Ecol 8:28–36. https://doi.org/10.1016/j.funeco.2013.12.008

    Article  Google Scholar 

  21. 21.

    Cordier T, Robin C, Capdevielle X, Desprez-Loustau ML, Vacher C (2012) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5:509–520. https://doi.org/10.1016/j.funeco.2011.12.004

    Article  Google Scholar 

  22. 22.

    Vincent JB, Weiblen GD, May G (2016) Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol Ecol 25:825–841. https://doi.org/10.1111/mec.13510

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Oono R, Rasmussen A, Lefèvre E (2017) Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environ Microbiol 00:2794–2805. https://doi.org/10.1111/1462-2920.13799

    CAS  Article  Google Scholar 

  24. 24.

    Kadowaki K, Sato H, Yamamoto S, Tanabe AS, Hidaka A, Toju H (2014) Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Popul Ecol 56:301–310. https://doi.org/10.1007/s10144-013-0424-z

    Article  Google Scholar 

  25. 25.

    Bahram M, Kõljalg U, Courty PE, Diédhiou AG, Kjøller R, Põlme S, Ryberg M, Veldre V, Tedersoo L (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol 101:1335–1344. https://doi.org/10.1111/1365-2745.12120

    Article  Google Scholar 

  26. 26.

    Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130. https://doi.org/10.1093/femsre/fuw040

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Barberan A, Mcguire KL, Wolf JA et al (2015) Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett 18:1397–1405. https://doi.org/10.1111/ele.12536

    PubMed  Article  Google Scholar 

  28. 28.

    von Humboldt A, Bonpland A (1807) Essai sur la géographie des plantes

  29. 29.

    Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science (80):346. https://doi.org/10.1126/science.1256688

  30. 30.

    Peay KG, Bidartondo MI, Elizabeth Arnold A (2010) Not every fungus is everywhere: scaling to the biogeography of fungal-plant interactions across roots, shoots and ecosystems. New Phytol 185:878–882

    PubMed  Article  Google Scholar 

  31. 31.

    Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM (2018) Why do microbes exhibit weak biogeographic patterns? ISME J 12:1404–1413. https://doi.org/10.1038/s41396-018-0103-3

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Mallick DIJ (1975) Development of the New Hebrides Archipelago. Philos Trans R Soc Lond Ser B Biol Sci 272:277–285. https://doi.org/10.1098/rstb.1975.0087

    Article  Google Scholar 

  33. 33.

    Mueller-Dombois D, Fosberg FR (2013) Vegetation of the tropical Pacific islands. Springer Science & Business Media

  34. 34.

    Vanuatu Meteorology and Geo-hazard Department, Australian Bureau of Meteorology, CSIRO (2015) Current and future climate of Vanuatu. Melbourne, Australia

  35. 35.

    McMurdie PJ, Holmes S (2014) Waste not, Want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    R Core Team (2019) R: A language and environment for statistical computing. Accessed 1st April 2019

  38. 38.

    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one 8(4):e61217

  39. 39.

    Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264. https://doi.org/10.1111/j.1472-4642.2007.00341.x

    Article  Google Scholar 

  40. 40.

    Fitzpatrick MC, Sanders NJ, Normand S, Svenning JC, Ferrier S, Gove AD, Dunn RR (2013) Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc R Soc B Biol Sci 280:20131201–20131201. https://doi.org/10.1098/rspb.2013.1201

    Article  Google Scholar 

  41. 41.

    Robinson CH, Szaro TM, Izzo AD, Anderson IC, Parkin PI, Bruns TD (2009) Spatial distribution of fungal communities in a coastal grassland soil. Soil Biol Biochem 41:414–416. https://doi.org/10.1016/j.soilbio.2008.10.021

    CAS  Article  Google Scholar 

  42. 42.

    Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434–447. https://doi.org/10.1038/nrmicro.2016.59

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of Western Amazonian forests. Science 299(80):241–244. https://doi.org/10.1126/science.1078037

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Van Der Linde S, Suz LM, Orme CDL et al (2018) Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558:243–248. https://doi.org/10.1038/s41586-018-0189-9

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    David AS, Seabloom EW, May G (2016) Plant host species and geographic distance affect the structure of aboveground fungal Symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microb Ecol 71:912–926. https://doi.org/10.1007/s00248-015-0712-6

    PubMed  Article  Google Scholar 

  46. 46.

    Poulin R (2003) The decay of similarity with geographical distance in parasite communities of vertebrate hosts. J Biogeogr 30:1609–1615. https://doi.org/10.1046/j.1365-2699.2003.00949.x

    Article  Google Scholar 

  47. 47.

    Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical Phyllosphere fungal communities. Botany. https://doi.org/10.1139/cjb-2013-0194

  48. 48.

    Thomas D, Vandegrift R, Roy BA, Hsieh HM, Ju YM (2019) Spatial patterns of fungal endophytes in a subtropical montane rainforest of northern Taiwan. Fungal Ecol 39:316–327. https://doi.org/10.1016/j.funeco.2018.12.012

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers and Drs. Nicole Hynson, Tom Ranker, Nhu Nguyen, and Michael Kantar for improving this manuscript. We are also very appreciative of Presley Dovo and the Vanuatu Department of Forestry for logistical support. This project would not be possible without field support from the ever-growing network of people associated with Plants mo Pipol blong Vanuatu. We would also like to recognize the contributions of the late Philemon Ala who had been helping with Plants mo Pipol since its inception. Finally, we are grateful to the many communities of Aneityum and Tanna for their kindness, hospitality, and for sharing so much invaluable knowledge, tankyu tumas.

Funding

A.B., T.T., and A.S.A. were supported by a grant from the National Science Foundation (1555793). G.M.P. was supported by a National Science Foundation grant awarded to NYGB (1555657).

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Boraks.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 117 kb)

ESM 2

(PDF 72 kb)

ESM 3

(PDF 657 kb)

ESM 4

(PDF 206 kb)

ESM 5

(PDF 282 kb)

ESM 6

(PDF 221 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boraks, A., Plunkett, G.M., Doro, T.M. et al. Scale-Dependent Influences of Distance and Vegetation on the Composition of Aboveground and Belowground Tropical Fungal Communities. Microb Ecol 81, 874–883 (2021). https://doi.org/10.1007/s00248-020-01608-4

Download citation

Keywords

  • Fungi
  • Tree
  • Community
  • Vanuatu
  • Spatial scale
  • Distance–decay of similarity