Skip to main content

Advertisement

Log in

Co-association of Two nir Denitrifiers Under the Influence of Emergent Macrophytes

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Diverse microorganisms perform similar metabolic process in biogeochemical cycles, whereas they are found of highly genomic differentiation. Biotic interactions should be considered in any community survey of these functional groups, as they contribute to community assembly and ultimately alter ecosystem properties. Current knowledge has mainly been achieved based on functional community characterized by a single gene using co-occurrence network analysis. Biotic interactions between functionally equivalent microorganisms, however, have received much less attention. Herein, we propose the nirK- and nirS-type denitrifier communities represented by these two nitrite reductase (nir)–encoding genes, as model communities to investigate the potential interactions of two nir denitrifiers. We evaluated co-occurrence patterns and co-association network structures of nir denitrifier community from an emergent macrophyte-dominated riparian zone of highly active denitrification in Lake Taihu, China. We found a more segregated pattern in combined nir communities than in individual communities. Network analyses revealed a modularized structure of associating nir denitrifiers. An increased proportion of negative associations among combined communities relative to those of individual communities indicated potential interspecific competition between nirK and nirS denitrifiers. pH and NH4+-N were the most important factors driving co-occurrence and mutual exclusion between nirK and nirS denitrifiers. We also showed the topological importance of nirK denitrifiers acting as module hubs for constructing entire association networks. We revealed previously unexplored co-association relationships between nirK and nirS denitrifiers, which were previously neglected in network analyses of individual communities. Using nir denitrifier community as a model, these findings would be helpful for us to understand the biotic interactions and mechanisms underlying how functional groups co-exist in performing biogeochemical cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. Front Microbiol 5:103. https://doi.org/10.3389/fmicb.2014.00103

    Article  PubMed  PubMed Central  Google Scholar 

  2. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039. https://doi.org/10.1126/science.1153213

    Article  CAS  PubMed  Google Scholar 

  3. Philippot L, Hallin S (2005) Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr Opin Microbiol 8:234–239. https://doi.org/10.1016/j.mib.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones C, Sarr A, Maron P-A (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619. https://doi.org/10.1038/ismej.2013.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2(6):936–943. https://doi.org/10.1038/s41559-018-0519-1

    Article  PubMed  Google Scholar 

  6. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A 109:1878–1887. https://doi.org/10.1073/pnas.1203287109

    Article  Google Scholar 

  7. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Li J, Shen W, Xu H, Li Y, Luo T (2019) The structure and species co-occurrence networks of soil denitrifying bacterial communities differ between a coniferous and a broadleaved forests. Microorganisms 7:361. https://doi.org/10.3390/microorganisms7090361

  9. Jones CM, Hallin S (2019) Geospatial variation in co-occurrence networks of nitrifying microbial guilds. Mol Ecol 28:293–306. https://doi.org/10.1111/mec.14893

    Article  CAS  PubMed  Google Scholar 

  10. Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, Kerckhof F-M, Boon N, Bodelier PLE (2016) Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front Microbiol 7:1285. https://doi.org/10.3389/fmicb.2016.01285

  11. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. https://doi.org/10.1046/j.1351-0754.2003.0556.x

    Article  Google Scholar 

  12. Tipton L, Müller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, Bonneau R, Ghedin E (2018) Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6:12. https://doi.org/10.1186/s40168-017-0393-0

  13. Marie Booth J, Fusi M, Marasco R, Michoud G, Fodelianakis S, Merlino G, Daffonchio D (2019) The role of fungi in heterogeneous sediment microbial networks. Sci Rep 9:7537. https://doi.org/10.1038/s41598-019-43980-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P (2019) Cross-domain and viral interactions in the microbiome. Microbiol Mol Biol Rev 83:e00044–e00018. https://doi.org/10.1128/MMBR.00044-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276. https://doi.org/10.1038/nrmicro.2018.9

  16. Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605. https://doi.org/10.1038/ismej.2008.128

    Article  CAS  PubMed  Google Scholar 

  17. Yin C, Fan F, Song A, Cui P, Li T, Liang Y (2015) Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Appl Microbiol Biotechnol 99:5719–5729. https://doi.org/10.1007/s00253-015-6461-0

    Article  CAS  PubMed  Google Scholar 

  18. Tsiknia M, Paranychianakis NV, Varouchakis EA, Nikolaidis NP (2015) Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiol Ecol 91:fiv052–fiv052. https://doi.org/10.1093/femsec/fiv052

    Article  CAS  PubMed  Google Scholar 

  19. Graf DRH, Jones CM, Hallin S (2014) Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 9:e114118. https://doi.org/10.1371/journal.pone.0114118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    Article  CAS  Google Scholar 

  21. Bonilla-Rosso G, Wittorf L, Jones CM, Hallin S (2016) Design and evaluation of primers targeting genes encoding NO-forming nitrite reductases: implications for ecological inference of denitrifying communities. Sci Rep 6:39208. https://doi.org/10.1038/srep39208

  22. Wittorf L, Jones CM, Bonilla-Rosso G, Hallin S (2018) Expression of nirK and nirS genes in two strains of Pseudomonas stutzeri harbouring both types of NO-forming nitrite reductases. Res Microbiol 169:343–347. https://doi.org/10.1016/j.resmic.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  23. Burt TP, Pinay G (2005) Linking hydrology and biogeochemistry in complex landscapes. Prog Phys Geogr 29:297–316. https://doi.org/10.1191/0309133305pp450ra

    Article  Google Scholar 

  24. Tague C (2009) Modeling hydrologic controls on denitrification: sensitivity to parameter uncertainty and landscape representation. Biogeochemistry 93:79–90. https://doi.org/10.1007/s10533-008-9276-6

    Article  Google Scholar 

  25. Dandie CE, Wertz S, Leclair CL, Goyer C, Burton DL, Patten CL, Zebarth BJ, Trevors JT (2011) Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol Ecol 77:69–82. https://doi.org/10.1111/j.1574-6941.2011.01084.x

    Article  CAS  PubMed  Google Scholar 

  26. Saarenheimo J, Tiirola MA, Rissanen AJ (2015) Functional gene pyrosequencing reveals core proteobacterial denitrifiers in boreal lakes. Front Microbiol 6:674. https://doi.org/10.3389/fmicb.2015.00674

    Article  PubMed  PubMed Central  Google Scholar 

  27. Priemé A, Braker G, Tiedje JM (2002) Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Appl Environ Microbiol 68:1893–1900. https://doi.org/10.1128/aem.68.4.1893-1900.2002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shapleigh JP (2012) The denitrifying prokaryotes. The prokaryotes: prokaryotic physiology and biochemistry. Springer, New York

    Google Scholar 

  29. Nadeau SA, Roco CA, Debenport SJ, Anderson TR, Hofmeister KL, Walter MT, Shapleigh JP (2019) Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients. Environ Microbiol 21:1255–1266. https://doi.org/10.1111/1462-2920.14587

    Article  CAS  PubMed  Google Scholar 

  30. Huang R, Zeng J, Zhao D, Cook KV, Hambright KD, Yu Z (2019) Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnol Oceanogr 65:S38–S48. https://doi.org/10.1002/lno.11325

  31. Zhao D, He X, Huang R, Yan W, Yu Z (2017) Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments. J Basic Microbiol 57:625–632. https://doi.org/10.1002/jobm.201700035

    Article  CAS  PubMed  Google Scholar 

  32. Wertz S, Dandie CE, Goyer C, Trevors JT, Patten CL (2009) Diversity of nirK denitrifying genes and transcripts in an agricultural soil. Appl Environ Microbiol 75:7365–7377. https://doi.org/10.1128/AEM.01588-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  34. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291. https://doi.org/10.3389/fmicb.2013.00291

  37. Wang Q, Quensen JFI, Fish JA, Lee TK, Sun Y, Tiedje JM, Cole JR (2013) Ecological patterns of nifH genes in four terrestrial climatic zones. mBio 4:e00592–13. https://doi.org/10.1128/mBio.00592-13

  38. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J 6:1058–1077. https://doi.org/10.1038/ismej.2011.172

    Article  CAS  PubMed  Google Scholar 

  40. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Strona G, Nappo D, Boccacci F, Fattorini S, San-Miguel-Ayanz J (2014) A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat Commun 5:4114. https://doi.org/10.1038/ncomms5114

    Article  CAS  PubMed  Google Scholar 

  42. Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091–2096. https://doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2

    Article  Google Scholar 

  43. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11:e1004226. https://doi.org/10.1371/journal.pcbi.1004226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111. https://doi.org/10.1103/PhysRevE.70.066111

    Article  CAS  Google Scholar 

  45. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900. https://doi.org/10.1038/nature03288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guimerà R, Sales-Pardo M, Amaral LAN (2007) Classes of complex networks defined by role-to-role connectivity profiles. Nat Phys 3:63–69. https://doi.org/10.1016/j.jacc.2007.01.076.White

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wu J, Mauricio B, Tan Y, Deng H (2010) Natural connectivity of complex networks. Chin Phys Lett 27:78902

    Article  Google Scholar 

  48. Eriksson PG, Weisner SEB (1999) An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnol Oceanogr 44:1993–1999. https://doi.org/10.4319/lo.1999.44.8.1993

    Article  CAS  Google Scholar 

  49. Reddy KR, Patrick WH, Lindau CW (1989) Nitrification-denitrification at the plant root-sediment in interface wetlands. Limnol Oceanogr 34:1004–1013. https://doi.org/10.4319/lo.1989.34.6.100

  50. Vila-Costa M, Pulido C, Chappuis E, Calviño A, Casamayor EO, Gacia E (2016) Macrophyte landscape modulates lake ecosystem-level nitrogen losses through tightly coupled plant-microbe interactions. Limnol Oceanogr 61:78–88. https://doi.org/10.1002/lno.10209

    Article  CAS  Google Scholar 

  51. Franklin HM, Robinson BH, Dickinson NM (2019) Plants for nitrogen management in riparian zones: a proposed trait-based framework to select effective species. Ecol Manag Restor 20:202–213. https://doi.org/10.1111/emr.12380

    Article  Google Scholar 

  52. Paranychianakis NV, Tsiknia M, Kalogerakis N (2016) Pathways regulating the removal of nitrogen in planted and unplanted subsurface flow constructed wetlands. Water Res 102:321–329. https://doi.org/10.1016/j.watres.2016.06.048

    Article  CAS  PubMed  Google Scholar 

  53. Ruiz-Rueda O, Hallin S, Bañeras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319. https://doi.org/10.1111/j.1574-6941.2008.00615.x

    Article  CAS  PubMed  Google Scholar 

  54. Wu H, Wang X, He X, Zhang S, Liang R, Shen J (2017) Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci Total Environ 598:697–703. https://doi.org/10.1016/j.scitotenv.2017.04.150

    Article  CAS  PubMed  Google Scholar 

  55. Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L (2019) A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol 33:540–552. https://doi.org/10.1111/1365-2435.13303

    Article  Google Scholar 

  56. Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669. https://doi.org/10.1111/nph.12235

    Article  CAS  PubMed  Google Scholar 

  57. Herrmann M, Saunders AM, Schramm A (2009) Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microbiol 75:3127–3136. https://doi.org/10.1128/AEM.02806-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toyama T, Furukawa T, Maeda N, Inoue D, Sei K, Mori K, Kikuchi S, Ike M (2011) Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Res 45:1629–1638. https://doi.org/10.1016/j.watres.2010.11.044

    Article  CAS  PubMed  Google Scholar 

  59. Li YH, Zhu JN, Zhai ZH, Zhang Q (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309:84–93. https://doi.org/10.1111/j.1574-6968.2010.02015.x

  60. Ai C, Liang G, Wang X, Sun J, He P, Zhou W (2017) A distinctive root-inhabiting denitrifying community with high N2O/(N2O+N2) product ratio. Soil Biol Biochem 109:118–123. https://doi.org/10.1016/j.soilbio.2017.02.008

    Article  CAS  Google Scholar 

  61. Garrido-Oter R, Nakano RT, Dombrowski N, Ma K-W, McHardy AC, Schulze-Lefert P (2018) Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24:155–167. https://doi.org/10.1016/j.chom.2018.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma S, Aneja MK, Mayer J, Munch JC, Schloter M (2005) Diversity of transcripts of nitrite reductase genes (nirK and nirS) in rhizospheres of grain legumes. Appl Environ Microbiol 71:2001–2007. https://doi.org/10.1128/AEM.71.4.2001-2007.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52:253–266. https://doi.org/10.1007/s00248-006-9071-7

    Article  CAS  PubMed  Google Scholar 

  64. Saarnio S, Wittenmayer L, Merbach W (2004) Rhizospheric exudation of Eriophorum vaginatum L. — potential link to methanogenesis. Plant Soil 267:343–355. https://doi.org/10.1007/s11104-005-0140-3

  65. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. Bergey’s manual of systematic bacteriology. Springer, New York

    Google Scholar 

  66. Horner-Devine MC, Silver JM, Leibold MA, Bohannan BJM, Colwell RK, Fuhrman JA, Green JL, Kuske CR, Martiny JBH, Muyzer G, Øvreås L, Reysenbach A-L, Smith VH (2007) A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88:1345–1353. https://doi.org/10.1890/06-0286

    Article  PubMed  Google Scholar 

  67. D’Amen M, Mod HK, Gotelli NJ, Guisan A (2018) Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 41:1233–1244. https://doi.org/10.1111/ecog.03148

    Article  Google Scholar 

  68. Jones CM, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641. https://doi.org/10.1038/ismej.2009.152

    Article  PubMed  Google Scholar 

  69. Yuan Q, Liu P, Lu Y (2012) Differential responses of nirK- and nirS-carrying bacteria to denitrifying conditions in the anoxic rice field soil. Environ Microbiol Rep 4:113–122. https://doi.org/10.1111/j.1758-2229.2011.00311.x

    Article  CAS  PubMed  Google Scholar 

  70. Junier P, Kim OS, Witzel KP, Imhoff JF, Hadas O (2008) Habitat partitioning of denitrifying bacterial communities carrying nirS or nirK genes in the stratified water column of Lake Kinneret, Israel. Aquat Microb Ecol 51:129–140. https://doi.org/10.3354/ame01186

    Article  Google Scholar 

  71. Smith JM, Ogram A (2008) Genetic and functional variation in denitrifier populations along a short-term restoration chronosequence. Appl Environ Microbiol 74:5615–5620. https://doi.org/10.1128/AEM.00349-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Knapp CW, Dodds WK, Wilson KC, O’Brien JM, Graham DW (2009) Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ Sci Technol 43:4273–4279. https://doi.org/10.1021/es9001407

    Article  CAS  PubMed  Google Scholar 

  73. Sale PF (1978) Coexistence of coral reef fishes — a lottery for living space. Environ Biol Fish 3:85–102. https://doi.org/10.1007/BF00006310

    Article  Google Scholar 

  74. Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, De Hollander M, Soto RL, Bouffaud M-L, Buée M, Dimmers W (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8:14349. https://doi.org/10.1038/ncomms14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang H, Gilbert JA, Zhu Y, Yang X (2018) Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Sci Total Environ 631-632:1342–1349. https://doi.org/10.1016/j.scitotenv.2018.03.102

    Article  CAS  PubMed  Google Scholar 

  76. Faust K, Lima-Mendez G, Lerat J-S, Sathirapongsasuti JF, Knight R, Huttenhower C, Lenaerts T, Raes J (2015) Cross-biome comparison of microbial association networks. Front Microbiol 6:1200. https://doi.org/10.3389/fmicb.2015.01200

    Article  PubMed  PubMed Central  Google Scholar 

  77. Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinf 13:113. https://doi.org/10.1186/1471-2105-13-113

    Article  Google Scholar 

  78. Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH, Douglas TA, Waldrop MP (2017) Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J 11:2305–2318. https://doi.org/10.1038/ismej.2017.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bareia T, Pollak S, Eldar A (2018) Self-sensing in Bacillus subtilis quorum-sensing systems. Nat Microbiol 3:83–89. https://doi.org/10.1038/s41564-017-0044-z

    Article  CAS  PubMed  Google Scholar 

  80. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257. https://doi.org/10.1038/s41477-018-0139-4

    Article  PubMed  Google Scholar 

  81. Šimek M, Jı́šová L, Hopkins DW (2002) What is the so-called optimum pH for denitrification in soil? Soil Biol Biochem 34:1227–1234. https://doi.org/10.1016/S0038-0717(02)00059-7

    Article  Google Scholar 

  82. Liu B, Mørkved PT, Frostegård Å, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417. https://doi.org/10.1111/j.1574-6941.2010.00856.x

    Article  CAS  PubMed  Google Scholar 

  83. Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF (2018) The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ Microbiol 20:1623–1640. https://doi.org/10.1111/1462-2920.14063

    Article  CAS  PubMed  Google Scholar 

  84. Paul EA, Clark FE (1989) Reduction and transport of nitrate. Soil Microbiol Biochem 9:81–85

    Google Scholar 

  85. Brenzinger K, Dörsch P, Braker G (2015) pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.00961

    Article  Google Scholar 

  86. Penton CR, Deenik JL, Popp BN, Bruland GL, Engstrom P, St. Louis D, Tiedje J (2013) Importance of sub-surface rhizosphere-mediated coupled nitrification-denitrification in a flooded agroecosystem in Hawaii. Soil Biol Biochem 57:362–373. https://doi.org/10.1016/j.soilbio.2012.10.018

    Article  CAS  Google Scholar 

  87. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1

    Article  CAS  PubMed  Google Scholar 

  88. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci U S A 104:19891–19896. https://doi.org/10.1073/pnas.0706375104

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hawkes CV, Keitt TH (2015) Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett 18:612–625. https://doi.org/10.1111/ele.12451

    Article  PubMed  Google Scholar 

  90. Gilarranz LJ, Rayfield B, Liñán-Cembrano G, Bascompte J, Gonzalez A (2017) Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357:199–201. https://doi.org/10.1126/science.aal4122

    Article  CAS  PubMed  Google Scholar 

  91. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351. https://doi.org/10.1126/science.1220529

    Article  CAS  PubMed  Google Scholar 

  92. Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24:833–845. https://doi.org/10.1016/j.tim.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  93. Nojiri M, Xie Y, Inoue T, Yamamoto T, Matsumura H, Kataoka K, Deligeer YK, Kai Y, Suzuki S (2007) Structure and function of a hexameric copper-containing nitrite reductase. Proc Natl Acad Sci U S A 104:4315–4320. https://doi.org/10.1073/pnas.0609195104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Röttjers L, Faust K (2018) From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol Rev 42:761–780. https://doi.org/10.1093/femsre/fuy030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science & Technology Basic Resources Investigation Program of China (2017FY100300), the National Natural Science Foundation of China (31730013, 41621002, 41871096, and 31971478), the Fundamental Research Funds for the Central Universities (2018B43414 and 2019B17814), and the China Postdoctoral Science Foundation (2018M642147).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and D.Z. designed and supported the study. R.H. carried out the experiment and analyzed the data. R.H. prepared the first draft. D.Z. provided the improvements for the final manuscript. B.Y. and Z.Y. carried out the lab work and contributed to commenting and revising. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin Zeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 4.70 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Zeng, J., Zhao, D. et al. Co-association of Two nir Denitrifiers Under the Influence of Emergent Macrophytes. Microb Ecol 80, 809–821 (2020). https://doi.org/10.1007/s00248-020-01545-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01545-2

Keywords

Navigation