Skip to main content

Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection

Abstract

Honeybees are important pollinators, having an essential role in the ecology of natural and agricultural environments. Honeybee colony losses episodes reported worldwide and have been associated with different pests and pathogens, pesticide exposure, and nutritional stress. This nutritional stress is related to the increase in monoculture areas which leads to a reduction of pollen availability and diversity. In this study, we examined whether nutritional stress affects honeybee gut microbiota, bee immunity, and infection by Nosema ceranae, under laboratory conditions. Consumption of Eucalyptus grandis pollen was used as a nutritionally poor-quality diet to study nutritional stress, in contraposition to the consumption of polyfloral pollen. Honeybees feed with Eucalyptus grandis pollen showed a lower abundance of Lactobacillus mellifer and Lactobacillus apis (Firm-4 and Firm-5, respectively) and Bifidobacterium spp. and a higher abundance of Bartonella apis, than honeybees fed with polyfloral pollen. Besides the impact of nutritional stress on honeybee microbiota, it also decreased the expression levels of vitellogenin and genes associated to immunity (glucose oxidase, hymenoptaecin and lysozyme). Finally, Eucalyptus grandis pollen favored the multiplication of Nosema ceranae. These results show that nutritional stress impacts the honeybee gut microbiota, having consequences on honeybee immunity and pathogen development. Those results may be useful to understand the influence of modern agriculture on honeybee health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 274:303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  Google Scholar 

  2. Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220–229. https://doi.org/10.1038/nature20588

    CAS  Article  PubMed  Google Scholar 

  3. Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6. https://doi.org/10.3896/IBRA.1.49.1.01

    Article  Google Scholar 

  4. Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS, Ellis JD, Wilson ME, Wilkes JT, Tarpy DR, Rose R, Lee K, Rangel J, vanEngelsdorp D (2017) A national survey of managed honey bee 2015-2016 annual colony losses in the USA. J Apic Res 56:328–340. https://doi.org/10.1080/00218839.2017.1344496

    Article  Google Scholar 

  5. Gray A, Brodschneider R, Adjlane N, Ballis A, Brusbardis V, Charrière J-D, Chlebo R, Coffey M F, Cornelissen B, Amaro da Costa C, Csáki T, Dahle B, Danihlík J, Maja Dražić M, Evans G, Fedoriak M, Forsythe I, de Graaf D, Gregorc A, Johannesen J, Kauko L, Kristiansen P, Martikkala M, Martín-Hernández R, Medina-Flores C A, Mutinelli F, Patalano S, Petrov P, Raudmets A, Ryzhikov VA, Simon-Delso N, Stevanovic J, Topolska G, Uzunov A, Vejsnaes F, Williams A, Zammit-Mangion M, Soroker V (2019) Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources, J Apic Res, 58:4, 479–485. https://doi.org/10.1080/00218839.2019.1615661

  6. Requier F, Antúnez K, Morales CL, Aldea Sánchez P, Castilhos D, Garrido M, Giacobino A, Reynaldi FJ, Rosso Londoño JM, Santos E, Garibaldi LA (2018) Trends in beekeeping and honey bee colony losses in Latin America. J Apic Res 57:657–662. https://doi.org/10.1080/00218839.2018.1494919

    Article  Google Scholar 

  7. Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347. https://doi.org/10.1126/science.1255957

  8. Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D (2018) Drivers of colony losses. Curr Opin Insect Sci 26:142–148. https://doi.org/10.1016/j.cois.2018.02.004

    Article  PubMed  Google Scholar 

  9. Naug D (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv 142:2369–2372. https://doi.org/10.1016/j.biocon.2009.04.007

    Article  Google Scholar 

  10. Keller I, Fluri P, Imdorf A (2005) Pollen nutrition and colony development in honey bees: part I. Bee World 86:3–10. https://doi.org/10.1080/0005772X.2005.11099641

    Article  Google Scholar 

  11. Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41:278–294. https://doi.org/10.1051/apido/2010012

    Article  Google Scholar 

  12. DeGrandi-Hoffman G, Chen Y, Huang E, Huang MH (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J Insect Physiol 56:1184–1191. https://doi.org/10.1016/j.jinsphys.2010.03.017

    CAS  Article  PubMed  Google Scholar 

  13. Alaux C, Dantec C, Parrinello H, Le Conte Y (2011) Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics 12:496. https://doi.org/10.1186/1471-2164-12-496

  14. Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS ONE 8:e72016. https://doi.org/10.1371/journal.pone.0072016

  15. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565. https://doi.org/10.1098/rsbl.2009.0986

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schmidt JO, Thoenes SC, Levin MD (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. J Econ Entomol 80:176–183. https://doi.org/10.1093/aesa/80.2.176

    Article  Google Scholar 

  17. Rinderer TE, Elliott KD (1977) Worker honey bee response to infection with Nosema apis. J Econ Entomol 70:431–433. https://doi.org/10.1093/jee/70.4.431

    Article  Google Scholar 

  18. Porrini MP, Sarlo E, Medici SM, Garrido PM, Porrini DP, Damiani N, Eguaras MJ (2011) Nosema ceranae development in Apis mellifera: influence of diet and infective inoculums. J Apic Res 50:35–41. https://doi.org/10.3896/IBRA.1.50.1.04

    Article  Google Scholar 

  19. Basualdo M, Barragán S, Antúnez K (2014) Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees. Environ Microbiol Rep 6:396–400. https://doi.org/10.1111/1758-2229.12169

    CAS  Article  PubMed  Google Scholar 

  20. Branchiccela B, Castelli L, Corona M, Díaz-Cetti S, Invernizzi C, de la Escalera MG, Mendoza Y, Santos E, Silva C, Zunino P, Antúnez K (2019) Impact of nutritional stress on the honeybee colony health. Sci Rep 12:9:10156. https://doi.org/10.1038/s41598-019-46453-9

  21. Invernizzi C, Santos E, García E, Daners G, Di Landro R, Saadoun A, Cabrera C (2011) Sanitary and nutritional characterization of honeybee colonies in Eucalyptus grandis plantations. Arch zootec 60:1303–1314. https://doi.org/10.4321/S0004-05922011000400045

  22. Mendoza Y, Díaz S, Ramallo G, Invernizzi C (2012) Incidence of Nosema ceranae during winter in honey bees colonies removed from Eucaliptus grandis plantations. Veterinaria 48(188):13–19

    Google Scholar 

  23. Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209. https://doi.org/10.1007/BF00984102

    CAS  Article  Google Scholar 

  24. Arien Y, Dag A, Zarchin S, Masci T, Shafira S (2015) Omega-3 deficiency impairs honey bee learning. Proc Natl Acad Sci of the U S A 51:15761–15766. https://doi.org/10.1073/pnas.1517375112

    CAS  Article  Google Scholar 

  25. Groot D (1953) Protein and amino acid requirements of the honey bee (Apis mellifera L.). Physiol Comp Oecol 3:197–285

  26. Somerville DC (2001) Nutritional value of bee collected pollens. Rural Industries Research and Development Corporation 1–166

  27. Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, Engel P, Ratnieks FLW, Hughes WOH (2018) Gut microbiota composition is associated with environmental landscape in honey bees. Ecol Evol 8:441–451. https://doi.org/10.1002/ece3.3597

  28. Sabree ZL, Hansen AK, Moran NA (2012) Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees. PLoS One 7:e41250. https://doi.org/10.1371/journal.pone.0041250

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7:e36393. https://doi.org/10.1371/journal.pone.0036393

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Raymann K, Moran NA (2018) The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci 26:97–104. https://doi.org/10.1016/j.cois.2018.02.012

  31. Engel P, Martinson VG, Moran NA (2013) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A 109:11002–11007. https://doi.org/10.5281/zenodo.147966

    Article  Google Scholar 

  32. Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018. https://doi.org/10.1099/ijs.0.044875-0

    CAS  Article  PubMed  Google Scholar 

  33. Ellegaard KM, Tamarit D, Javelind E, Olofsson TC, Andersson SG, Vasquez A (2015) Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genomics 16:284. https://doi.org/10.1186/s12864-015-1476-6

  34. Engel P, Kwong WK, Moran NA (2013) Frischella perrara gen. Nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int J Syst Evol Microbiol 63:3646–3651. https://doi.org/10.1099/ijs.0.049569-0

    CAS  Article  PubMed  Google Scholar 

  35. Kesnerova L, Moritz R, Engel P (2016) Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Int J Syst Evol Microbiol 66:414–421. https://doi.org/10.1099/ijsem.0.000736

    CAS  Article  PubMed  Google Scholar 

  36. Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS, Anderson KE (2014a) Origin and effect of alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. Nov., sp. nov. Appl Environ Microbiol 80:7460–7472. https://doi.org/10.1128/AEM.02043-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Evans JD, Spivak M (2010) Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 103:S62–S72. https://doi.org/10.1016/j.jip.2009.06.019

    Article  PubMed  Google Scholar 

  38. Danihlík J, Aronstein K, Petřivalský M (2016) Antimicrobial peptides: a key component of honey bee innate immunity. J Apic Res 54:123–136. https://doi.org/10.1080/00218839.2015

    Article  Google Scholar 

  39. White JWJ, Subers MH, Schepartz AI (1963) The identification of inhibine, antibacterial factor in honey, as hydrogen peroxide, and its origin in a honey glucose oxidase system. Biochim Biophys Acta 73:57–70. https://doi.org/10.1016/0926-6569(63)90108-1

    CAS  Article  PubMed  Google Scholar 

  40. Doublet V, Poeschl Y, Gogol-Döring A, Alaux C, Annoscia D, Aurori C, Barribeau SM, Bedoya-Reina OC, Brown MJ, Bull JC, Flenniken ML, Galbraith DA, Genersch E, Gisder S, Grosse I, Holt HL, Hultmark D, Lattorff HM, Le Conte Y, Manfredini F, McMahon DP, Moritz RF, Nazzi F, Niño EL, Nowick K, van Rij RP, Paxton RJ, Grozinger CM (2017) Unity in defense: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics 18:207. https://doi.org/10.1186/s12864-017-3597-6

  41. Faegri K, Iversen J (1975) Textbook of modern pollen analysis. T Munksgaard Copenhagen, p 423

  42. Louveaux J, Mauricio A, Vorwohl G (1978) Methods of melissopalynology. Bee World 59:139–157. https://doi.org/10.1080/0005772X.1978.11097714

    Article  Google Scholar 

  43. Wiliams GR, Alaux C, Costa C, Csákit T, Doublet V, Eisenhardt D, Fries I, Kuhn R, Mcmahon DP, Medrzycki P, Murray TE, Natsopoulou ME, Neumann, P, Oliver R, Paxton RJ, Pernal SF, Shutler D, Tanner G, Van der steen JJM, Brodschneider R (2013) Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. In V Dietemann, JD Ellis, P Neumann (Eds) the COLOSS BEEBOOK, volume I: standard methods for Apis mellifera research. J Apic Res 52(1). https://doi.org/10.3896/IBRA.1.52.1.04

  44. Porrini MP, Garrido PM, Eguaras MJ (2013) Individual feeding of honeybees:modification of the Rinderer technique. J Apic Res 52:194–195

  45. Fries I, Chauzat MP, Chen YP, Doublet V, Genersch E, Gisder S, Higes M, McMahon DP, Martín-Hernández R, Natsopoulou M, Paxton RJ, Tanner G, Webster TC, Williams GR (2013) Standard methods for Nosema research. J Apic Res 52:1–28. https://doi.org/10.3896/IBRA.1.52.1.14

    Article  Google Scholar 

  46. Human H, Beodschneider R, Dietemann V, Dively G, Ellis J, Forsgren E, Fries I, Hatjina F, Hu F-L, Jaffé R, Köhler A, Pirk CWW, Rose R, Strauss U, Tanner G, Van der Steen JJM, Vejsnaes F, Williams GR, Zheng H-Q (2013) Miscellaneous standard methods for Apis mellifera research. In V Dietemann; J D Ellis; P Neumann (Eds) the COLOSS BEEBOOK, volume I: standard methods for Apis mellifera research. J Apic Res 52(4). https://doi.org/10.3896/IBRA.1.52.4.10

  47. Martin-Hernandez R, Meana A, Prieto L, Salvador AM, Garrido-Bailon E, Higes M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73:6331–6338. https://doi.org/10.1128/AEM.00270-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Anderson KE, Carroll MJ, Sheehan T, Lanan MC, Mott BM, Maes P, Corby-Harris V (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917. https://doi.org/10.1111/mec.12966

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322 0099-2240/96/$04.0010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Arismendi N, Bruna A, Zapata N, Vargas M (2016) PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries. J Invertebr Pathol 134:1–5. https://doi.org/10.1016/j.jip.2015.12.008

    CAS  Article  PubMed  Google Scholar 

  51. Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582. https://doi.org/10.1111/j.1574-6941.2006.00190.x

    CAS  Article  PubMed  Google Scholar 

  52. Evans JD (2006) Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and disease. J Invertebr Pathol 93:135–139. https://doi.org/10.1016/j.jip.2006.04.004

    CAS  Article  PubMed  Google Scholar 

  53. Ott SJ, Musfeldt M, Ullmann U, Hampe J, Schreiber S (2004) Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric Flora. J Clin Microbiol 42:2566–2572. https://doi.org/10.1128/JCM.42.6.2566-2572.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Yang X, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A 102:7470–7475. https://doi.org/10.1073/pnas.0501860102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Corona M, Velarde R, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE (2007) Vitellogenin, juvenile hormone, insulin signalling, and queen honey bee longevity. Proc Natl Acad Sci U S A 104:7128–7133. https://doi.org/10.1073/pnas.0701909104

  56. Engel P, James RR, Koga R, Kwong WK, McFrederick QS, Moran NA (2013) Standard methods for research on Apis mellifera gut symbionts. J Apic Res 52(4):1–24. https://doi.org/10.3896/IBRA.1.52.4.07

    Article  Google Scholar 

  57. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    CAS  Article  PubMed  Google Scholar 

  59. Lan Y, Wang Q, Cole JR, Rosen GL (2012) Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. Public Library of Science ONE 7:e32491. https://doi.org/10.1371/journal.pone.0032491

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  62. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(e45):387–409. https://doi.org/10.1051/apido:2000130

    Article  Google Scholar 

  63. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron:4 http://palaeo-electronica.org/2001_2001/past/issue2001_2001.htm

  64. Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of Acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 80:7378–7387. https://doi.org/10.1128/AEM.01861-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E, Duranti S, Serafini F, Viappiani A, Strati F, Ferrarini A, Delledonne M, Henrissat B, Coutinho P, Fitzgerald GF, Margolles A, van Sinderen VM (2012) Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 7(9):e44229. https://doi.org/10.1371/journal.pone.0044229

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Forsgren E, Olofsson TC, Vasquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41:99–108. https://doi.org/10.1051/apido/2009065

    Article  Google Scholar 

  68. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid Bacteria and honeybees. PLoS One 7(7):e33188. https://doi.org/10.1371/journal.pone.0033188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Killer J, Dubná S, Sedláček I, Švec P (2014) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 64:152–157. https://doi.org/10.1099/ijs.0.053033-0

    CAS  Article  PubMed  Google Scholar 

  70. Chomel BB, Kasten RW (2010) Bartonellosis, an increasingly recognized zoonosis. J Appl Microbiol 109:743–750. https://doi.org/10.1111/j.1365-2672.2010.04679.x

    CAS  Article  PubMed  Google Scholar 

  71. Kopecky J, Nesvorna M, Hubert J (2014) Bartonella-like bacteria carried by domestic mite species. Exp Appl Acarol 64:21–32. https://doi.org/10.1007/s10493-014-9811-1

    CAS  Article  PubMed  Google Scholar 

  72. Hubert J, Erban T, Kamler M, Kopecky J, Nesvorna M, Hejdankova S, Titera D, Tyl J, Zurek L (2015) Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris. J Appl Microbiol 119:640–654. https://doi.org/10.1111/jam.12899

    CAS  Article  PubMed  Google Scholar 

  73. Amdam GV, Norberg K, Hagen A, Omholt SW (2003) Social exploitation of vitellogenin. Proc Natl Acad Sci USA 100: 1799-1802. https://doi.org/10.1073/pnas.0333979100

  74. Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proceedings of the National Academy of Sciences USA 103:962–967. https://doi.org/10.1073/pnas.0502681103

    CAS  Article  Google Scholar 

  75. Nelson CM, Ihle KE, Fondrk MK, Page Jr RE, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biology 5: 0673–0677. https://doi.org/10.1371/journal.pbio.0050062

  76. Bitondi MMG, Simões ZLP (1996) The relationship between level of pollen in the diet, vitellogenin and juvenile hormone titres in Africanized Apis mellifera workers. J Apic Res 35:27–36. https://doi.org/10.1080/00218839.1996.11100910

    CAS  Article  Google Scholar 

  77. Basualdo M, Barragán S, Vanagas L, García C, Solana H, Rodríguez E, Bedascarrasbure E (2013) Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae). J Econ Entomol 106:1553–1558. https://doi.org/10.1603/EC12466

    CAS  Article  PubMed  Google Scholar 

  78. Corby-Harris V, Jones BM, Walton A, Schwan MR, Anderson KE (2014) Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers. BMC Genomics 15:134. https://doi.org/10.1186/1471-2164-15-134

  79. Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268:7044–7054

    CAS  PubMed  Google Scholar 

  80. Gillespie JP, Kanost M (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643. https://doi.org/10.1146/annurev.ento.42.1.611

    CAS  Article  PubMed  Google Scholar 

  81. Imler JL, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21. https://doi.org/10.1159/000086648

  82. Maggi M, Negri P, Plischuk S, Szawarski N, DePiano F, De Feudis L, Eguaras M, Audisio C (2013) Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet Microbiol  https://doi.org/10.1016/j.vetmic.2013.07.030

  83. Baffoni L, Gaggìa F, Alberoni D, Cabbri R, Nanetti A, Biavati B, Di Gioia D (2015) Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benef Microbes 7:1–8. https://doi.org/10.3920/BM2015.0085

  84. Arredondo D, Castelli L, Porrini M, Garrido M, Eguaras M, Zunino P, Antúnez K (2017) Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Benef Microbes 9:1–12. https://doi.org/10.3920/BM2017.0075

  85. Rubanov A, Russell KA, Rothman JA, Nieh JC, McFrederick QS (2019) Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Sci Rep 9:3820. https://doi.org/10.1038/s41598-019-40347-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290. https://doi.org/10.1111/j.1462-2920.2009.01953.x

    CAS  Article  PubMed  Google Scholar 

  87. Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100:185–188. https://doi.org/10.1016/j.jip.2008.12.001

Download references

Acknowledgments

This work was supported by “Comisión Sectorial de Investigación Científica” (CSIC 6406) and “Agencia Nacional de Investigación e Innovación” (POS_NAC_2013_1_12228), Uruguay. Authors thank researchers and technicians from the Instituto Nacional de Investigación Agropecuaria (Yamandú Mendoza, Gustavo Ramallo, Carlos Silva and Sebastián Díaz) for their help with sample collection. Finally, we thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Antúnez.

Electronic supplementary material

ESM 1

(PDF 631 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castelli, L., Branchiccela, B., Garrido, M. et al. Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection. Microb Ecol 80, 908–919 (2020). https://doi.org/10.1007/s00248-020-01538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01538-1

Keywords

  • Apis mellifera
  • Colony losses
  • Pollen
  • Nutritional stress
  • Pathogens
  • Microbiota