Skip to main content

Advertisement

Log in

Diverse Thaumarchaeota Dominate Subsurface Ammonia-oxidizing Communities in Semi-arid Floodplains in the Western United States

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Subsurface microbial communities mediate biogeochemical transformations that drive both local and ecosystem-level cycling of essential elements, including nitrogen. However, their study has been largely limited to the deep ocean, terrestrial mines, caves, and topsoils (< 30 cm). Here, we present regional insights into the microbial ecology of aerobic ammonia oxidation within the terrestrial subsurface of five semi-arid riparian sites spanning a 900-km N-S transect. We sampled sediments, profiled communities to depths of ≤ 10 m, and compared them to reveal trends regionally within and surrounding the Upper Colorado River Basin (CRB). The diversity and abundance of ammonia-oxidizing microbial communities were evaluated in the context of subsurface geochemistry by applying a combination of amoA (encoding ammonia monooxygenase subunit A) gene sequencing, quantitative PCR, and geochemical techniques. Analysis of 898 amoA sequences from ammonia-oxidizing archaea (AOA) and bacteria (AOB) revealed extensive ecosystem-scale diversity, including archaeal amoA sequences from four of the five major AOA lineages currently found worldwide as well as distinct AOA ecotypes associated with naturally reduced zones (NRZs) and hydrogeochemical zones (unsaturated, capillary fringe, and saturated). Overall, AOA outnumber AOB by 2- to 5000-fold over this regional scale, suggesting that AOA may play a prominent biogeochemical role in nitrification within terrestrial subsurface sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Winogradsky S (1890) Recherches sur les organismes de la nitrification. Ann Inst Pasteur 4:257–275

    Google Scholar 

  2. Arp DJ, Chain PSG, Klotz MG (2007) The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61:503–528

    CAS  PubMed  Google Scholar 

  3. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  4. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    PubMed  Google Scholar 

  5. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    CAS  PubMed  Google Scholar 

  6. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    CAS  PubMed  Google Scholar 

  8. Wuchter C, Abbas B, Coolen M, Herfort L, van Bleijswijk J, Timmers P et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317–12322

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Auguet JC, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190

    PubMed  Google Scholar 

  10. van Kessel M, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B et al (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    PubMed  PubMed Central  Google Scholar 

  11. Daims H, Luecker S, Wagner M (2016) A New perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24:699–712. https://doi.org/10.1016/j.tim.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel M, Daebeler A et al (2017) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol 8:1508

    PubMed  PubMed Central  Google Scholar 

  13. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nunoura T, Nishizawa M, Kikuchi T, Tsubouchi T, Hirai M, Koide O et al (2013) Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ Microbiol 15:3087–3107

    CAS  PubMed  Google Scholar 

  15. Lagostina L, Goldhammer T, Roy H, Evans TW, Lever MA, Jorgensen BB et al (2015) Ammonia-oxidizing Bacteria of the Nitrosospira cluster I dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre. Environ Microbiol Rep 7:404–413

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo ZH, Xu W, Li M, Gu JD, Zhong TH (2015) Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean. Anton Leeuw Int J G 108:329–342

    CAS  Google Scholar 

  17. Wang J, Kan JJ, Zhang XD, Xia ZQ, Zhang XC, Qian G et al (2017) Archaea dominate the ammonia-oxidizing community in deep-sea sediments of the eastern Indian Ocean-from the equator to the Bay of Bengal. Front Microbiol 8:16

    PubMed  PubMed Central  Google Scholar 

  18. Spear JR, Barton HA, Robertson CE, Francis CA, Pace NR (2007) Microbial community biofabrics in a geothermal mine adit. Appl Environ Microbiol 73:6172–6180

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Wu LQ, Boden R, Hillebrand A, Kumaresan D, Moussard H, Baciu M, Lu YH, Murrell JC (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104

    CAS  PubMed  Google Scholar 

  20. Marques ELS, Dias JCT, Gross E, Silva A, de Moura SR, Rezende RP (2019) Purple sulfur bacteria dominate microbial community in brazilian limestone cave. Microorganisms 7:29

    CAS  PubMed Central  Google Scholar 

  21. He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:3152–3152

    CAS  Google Scholar 

  22. Fierer N, Carney KM, Horner-Devine MC, Megonigal JP (2009) The biogeography of ammonia-oxidizing bacterial communities in soil. Microb Ecol 58:435–445

    PubMed  Google Scholar 

  23. Oton EV, Quince C, Nicol GW, Prosser JI, Gubry-Rangin C (2016) Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota. ISME J 10:85–96

    CAS  PubMed  Google Scholar 

  24. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Sci Total Environ 10:2966–2978

    CAS  Google Scholar 

  25. Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F (2013) Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process 2:9

    Google Scholar 

  26. Alves R, Minh B, Urich T, von Haeseler A, Schleper C (2018) Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun 9:1517

    PubMed  PubMed Central  Google Scholar 

  27. Prosser J, Nicol G (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    CAS  PubMed  Google Scholar 

  28. Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    CAS  PubMed  Google Scholar 

  29. Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    CAS  PubMed  Google Scholar 

  30. Koops HP, Purkhold U, Pommerening-Roser A, Timmermann G, Wagner M (2003) The lithoautotrophic ammonia-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, New York, pp 778–811

    Google Scholar 

  31. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    CAS  PubMed  Google Scholar 

  32. Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    CAS  PubMed  Google Scholar 

  34. Park BJ, Park SJ, Yoon DN, Schouten S, Damste JSS, Rhee SK (2010) Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 76:7575–7587

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung MY, Park SJ, Min D, Kim J-S, Rijpstra WIC, Damste JSS et al (2011) Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl Environ Microbiol 77:8635–8647

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P et al (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549:269–272

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ficklin DL, Stewart IT, Maurer EP (2013) Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin. PLoS One 8:17

    Google Scholar 

  38. Noël V, Boye K, Kukkadapu RK, Bone S, Pacheco JSL, Cardarelli E et al (2017a) Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Sci Total Environ 603:663–675

    PubMed  Google Scholar 

  39. Noël V, Boye K, Lezama Pacheco JS, Bone SE, Janot N, Cardarelli E et al (2017b) Redox controls over the stability of U(IV) in floodplains of the Upper Colorado River Basin. Environ Sci Technol 51:10954–10964

    PubMed  Google Scholar 

  40. Yabusaki SB, Wilkins MJ, Fang YL, Williams KH, Arora B, Bargar J et al (2017) Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ Sci Technol 51:3307–3317

    CAS  PubMed  Google Scholar 

  41. Janot N, Pacheco JSL, Pham DQ, O'Brien TM, Hausladen D, Noël V et al (2016) Physico-chemical heterogeneity of organic-rich sediments in the Rifle Aquifer, CO: impact on uranium biogeochemistry. Environ Sci Technol 50:46–53

    CAS  PubMed  Google Scholar 

  42. Campbell KM, Kukkadapu RK, Qafoku NP, Peacock AD, Lesher E, Williams KH et al (2012) Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. Appl Geochem 27:1499–1511

    CAS  Google Scholar 

  43. Nogaro G, Datry T, Mermillod-Blondin F, Foulquier A, Montuelle B (2013) Influence of hyporheic zone characteristics on the structure and activity of microbial assemblages. Freshw Biol 58:2567–2583. https://doi.org/10.1111/fwb.12233

    Article  Google Scholar 

  44. Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hou Z, Nelson W, Stegen J, Murray C, Arntzen E, Crump A, Kennedy D, Perkins M, Scheibe T, Fredrickson J, Zachara J (2017) Geochemical and microbial community attributes in relation to hyporheic zone geological facies. Sci Rep 7. https://doi.org/10.1038/s41598-017-12275-w

  46. Taylor A, Giguere A, Zoebelein C, Myrold D, Bottomley P (2017) Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J 11:896–908

    CAS  PubMed  Google Scholar 

  47. Miller MP, Buto SG, Susong DD, Rumsey CA (2016) The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. Water Resour Res 52:3547–3562

    Google Scholar 

  48. Dam WL, Campbell S, Johnson RH, Looney BB, Denham ME, Eddy-Dilek CA, Babits SJ (2015) Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA. Environ Earth Sci 74:7255–7265

    Google Scholar 

  49. Stephen JR, Chang YJ, Macnaughton SJ, Kowalchuk GA, Leung KT, Flemming CA, White DC (1999) Effect of toxic metals on indigenous soil β-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol 65:95–101

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10:3002–3016

    CAS  PubMed  Google Scholar 

  51. Pester M, Rattei T, Flechl S, Grongroft A, Richter A, Overmann J et al (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Phan TT, Capo RC, Stewart BW, Graney JR, Johnson JD, Sharma S, Toro J (2015) Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: uranium, arsenic, barium. Appl Geochem 60:89–103. https://doi.org/10.1016/j.apgeochem.2015.01.013

    Article  CAS  Google Scholar 

  54. Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL: http://www.r-project.org/

    Google Scholar 

  55. Oksanen, J.F., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D. et al. (2018) Package ‘vegan’ community ecology package version 2.5-2

  56. McMurdie PJ, Holmes S (2013) phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120 Accessed April 2016

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lozupone C, Lladser M, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    PubMed  Google Scholar 

  59. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364

    CAS  PubMed  Google Scholar 

  60. Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    CAS  PubMed  Google Scholar 

  61. Wessén E, Soderstrom M, Stenberg M, Bru D, Hellman M, Welsh A et al (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J 5:1213–1225

    PubMed  PubMed Central  Google Scholar 

  62. Kim J-G, Jung M-Y, Park S-J, Rijpstra WIC, Damste JSS, Madsen EL, Min D, Kim J-S, Kim G-J, Rhee S-K (2012) Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ Microbiol 14:1528–1543. https://doi.org/10.1111/j.1462-2920.2012.02740.x

    Article  CAS  PubMed  Google Scholar 

  63. Chen X, Zhu Y, Xia Y, Shen J, He J (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987

    CAS  PubMed  Google Scholar 

  64. Szukics U, Hackl E, Zechmeister-Boltenstern S, Sessitsch A (2012) Rapid and dissimilar response of ammonia oxidizing archaea and bacteria to nitrogen and water amendment in two temperate forest soils. Microbiol Res 167:103–109. https://doi.org/10.1016/j.micres.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  65. Sanford RF (1994) A quantitative model of groundwater-flow during formation of tabular sandstone uranium deposits. Econ Geol Bull Soc 89:341–360

    Google Scholar 

  66. D'Elia AH, Liles GC, Viers JH, Smart DR (2017) Deep carbon storage potential of buried floodplain soils. Sci Rep 7:8181

    PubMed  PubMed Central  Google Scholar 

  67. Bone SE, Cahill MR, Jones ME, Fendorf S, Davis J, Williams KH, Bargar JR (2017) Oxidative Uranium release from anoxic sediments under diffusion-limited conditions. Environ Sci Technol 51:11039–11047

    CAS  PubMed  Google Scholar 

  68. Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK et al (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 39:688–728

    CAS  PubMed  Google Scholar 

  69. Reed DW, Smith JM, Francis CA, Fujita Y (2010) Responses of ammonia-oxidizing bacterial and archaeal populations to organic nitrogen amendments in low-nutrient groundwater. Appl Environ Microbiol 76:2517–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao HL, Auguet JC, Gu JD (2013) Global ecological pattern of ammonia-oxidizing archaea. PLoS One 8:e52853

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL et al (2016) Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol 18:159–173

    CAS  PubMed  Google Scholar 

  72. Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6:e16626

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tolar BB, Mosier AC, Lund MB, Francis CA (2019) Nitrosarchaeum. Bergey’s Manual of Systematics of Archaea and Bacteria, pp 1–9. https://doi.org/10.1002/9781118960608.gbm01289

  74. Mosier AC, Lund MB, Francis CA (2012) Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 64:955–963

    CAS  PubMed  Google Scholar 

  75. Nacke H, Schoning I, Schindler M, Schrumpf M, Daniel R, Nicol G, Prosser J (2017) Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity. FEMS Microbiol Ecol 93:11

    Google Scholar 

  76. Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH, Tringe SG, Banfield JF (2015) Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J 9:1846–1856

    PubMed  PubMed Central  Google Scholar 

  77. Flynn T, Sanford R, Ryu H, Bethke C, Levine A, Ashbolt N, Domingo J (2013) Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol 13:146

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang J, Jiang H, Dong H, Wang H, Wu G, Hou W et al (2013) amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China. Front Microbiol 4:329

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C et al (2016) Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 92:1–10

    CAS  Google Scholar 

  80. Jung MY, Kim JG, Damste JSS, Rijpstra WIC, Madsen EL, Kim SJ et al (2016) A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep 8:983–992

    CAS  PubMed  Google Scholar 

  81. Horz HP, Rotthauwe JH, Lukow T, Liesack W (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods 39:197–204

    CAS  PubMed  Google Scholar 

  82. Rice MC, Norton JM, Valois F, Bollmann A, Bottomley PJ, Klotz MG et al (2016) Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Stand Genomic Sci 11:8

    Google Scholar 

  83. Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PSG et al (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74:3559–3572

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Adair KL, Schwartz E (2008) Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb Ecol 56:420–426

    CAS  PubMed  Google Scholar 

  85. Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    CAS  Google Scholar 

  86. Wankel S, Mosier A, Hansel C, Paytan A, Francis C (2011) Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough Estuary, California. Appl Environ Microbiol 77:269–280

    CAS  PubMed  Google Scholar 

  87. Hong Y, Xu X, Kan J, Chen F (2014) Linking seasonal inorganic nitrogen shift to the dynamics of microbial communities in the Chesapeake Bay. Appl Microbiol Biotechnol 98:3219–3229

    CAS  PubMed  Google Scholar 

  88. Dang HY, Li J, Chen RP, Wang L, Guo LZ, Zhang ZN, Klotz MG (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 76:4691–4702

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bernhard A, Donn T, Giblin A, Stahl D (2005) Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ Microbiol 7:1289–1297

    CAS  PubMed  Google Scholar 

  90. Winkel M, de Beer D, Lavik G, Peplies J, Mussmann M (2014) Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments. Environ Microbiol 16:1612–1626

    CAS  PubMed  Google Scholar 

  91. Orsi WD (2013) Gene expression in the deep biosphere. Nature 499:205–208

    CAS  PubMed  Google Scholar 

  92. Bienhold C, Boetius A, Ramette A (2012) The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. ISME J 6:724–732

    CAS  PubMed  Google Scholar 

  93. Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P et al (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 108:21206–21211

    CAS  PubMed  PubMed Central  Google Scholar 

  94. de Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4. https://doi.org/10.3389/fmicb.2013.00265

  95. Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning? Adv Appl Microbiol 75:33–70. https://doi.org/10.1016/b978-0-12-387046-9.00002-5

    Article  CAS  PubMed  Google Scholar 

  96. Bradford M, Wood S, Bardgett R, Black HIJ, Bonkowski M, Eggers T et al (2014) Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc Natl Acad Sci U S A 111:14478–14483

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, Macqueen DJ (2015) Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proc Natl Acad Sci U S A 112:9370–9375

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Boye K, Noël V, Tfaily MM, Bone SE, Williams KH, Bargar JR, Fendorf S (2017) Thermodynamically controlled preservation of organic carbon in floodplains. Nat Geosci 10:415–419

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Vincent Noël, Kristin Boye, Juan de la Paz, Kenneth Williams, and William Dam for their assistance accessing and collecting the samples described. The authors would also like to acknowledge Kolyne DeJesus for her assistance preparing and analyzing geochemical properties of samples and Bradley Tolar for providing useful feedback on an earlier version of this manuscript.

Funding

Funding was provided by the DOE Office of Biological and Environmental Research, Subsurface Biogeochemistry Research (SBR) activity to the SLAC SFA program under contract DE-AC02-76SF00515 to SLAC and to the LBL Watershed Function SFA under Award Number DE-AC02-05CH11231, as well as contract DE-SC0019119 to C.A.F. SSRL and SLAC are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515, the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). We gratefully acknowledge substantial logistical support from the US Department of Energy, Office of Legacy Management, which provided access to the Riverton, Shiprock, Naturita, and Grand Junction field sites, obtained permits for operations, provided ES&H support, and conducted drilling operations. Access to the Rifle field site, logistical support, and drilling operations were provided by the LBNL Watershed Function SFA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Francis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1.9 mb)

ESM 2

(XLSX 27 kb)

ESM 3

(XLSX 33 kb)

ESM 4

(XLSX 26 kb)

ESM 5

(XLSX 17.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardarelli, E.L., Bargar, J.R. & Francis, C.A. Diverse Thaumarchaeota Dominate Subsurface Ammonia-oxidizing Communities in Semi-arid Floodplains in the Western United States. Microb Ecol 80, 778–792 (2020). https://doi.org/10.1007/s00248-020-01534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01534-5

Keywords

Navigation