Skip to main content

Advertisement

Log in

Terrestrial Isopods Porcellio scaber and Oniscus asellus (Crustacea: Isopoda) Increase Bacterial Abundance and Modify Microbial Community Structure in Leaf Litter Microcosms: a Short-Term Decomposition Study

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Invasive terrestrial isopods are likely to have altered leaf litter decomposition processes in North American forests, but the mechanisms underlying these alterations and the degree to which they differ among isopod species are poorly characterized. Using mixed-deciduous leaf litter microcosms, we quantified the effects of two common, invasive isopods (Oniscus asellus and Porcellio scaber) on short-term leaf litter decomposition and microbial community structure and function. Microcosms containing ground litter and a microbial inoculant were exposed to one of the two isopod species or no isopods for 21 days. Mass loss was then quantified as the change in litter dry mass after leaching, and microbial respiration was quantified as the mass of CO2 absorbed by soda lime. Litter leachates were plated on agar to quantify culturable bacterial and fungal abundance, and denaturing gradient gel electrophoresis of amplified leachate microbial DNA was used to characterize shifts in microbial community structure. Isopod presence increased litter mass loss by a modest ~ 6%, but did not affect litter microbial respiration. Bacterial abundance increased significantly in the presence of isopods, while fungal abundance was either unchanged or reduced. Overall litter microbial species richness was reduced by isopods, with O. asellus specifically reducing fungal abundance and diversity. Isopods modified the microbial community structure by suppressing four bacterial and one fungal species, while promoting growth of four other bacterial species (two unique to each isopod species) and two fungal species (one which was unique to O. asellus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Palmén E (1958) The role of European species in the Newfoundland fauna of chilopods, diplopods and terrestrial isopods. Proc X Int Congr Entomol 1:899–902

    Google Scholar 

  2. Hornung E, Szlavecz K, Dombos M (2015) Demography of some non-native isopods (Crustacea, Isopoda, Oniscidea) in a Mid-Atlantic forest. USA ZooKeys 127

  3. Szlavecz K, Vilisics F, Tóth Z, Hornung E (2018) Terrestrial isopods in urban environments: an overview. ZooKeys 801:97–126

  4. Szlávecz K, Pobozsny M (1995) Coprophagy in isopods and diplopods: a case for indirect interaction. Acta Zool Fenn 196:124–128

    Google Scholar 

  5. Szlávecz K, Maiorana VC (1998) Supplementary food in the diet of the terrestrial isopod Porcellio scaber Latr. (Isopoda: Oniscidea). Israel J Zool 44:413–422

    Google Scholar 

  6. Ihnen K, Zimmer M (2008) Selective consumption and digestion of litter microbes by Porcellio scaber (Isopoda: Oniscidea). Pedobiologia 51:335–342

    Google Scholar 

  7. Kostanjšek R, Milatovič M, Štrus J (2010) Endogenous origin of endo-β-1, 4-glucanase in common woodlouse Porcellio scaber (Crustacea, Isopoda). J Comp Physiol B 180:1143–1153

    PubMed  Google Scholar 

  8. Delhoumi M, Zaabar W, Bouslama MF, Achouri MS (2019) Effect of symbiont acquisition on growth, survival and fertility of the terrestrial isopod Porcellionides pruinosus (Crustacea, Oniscidea). Invertebr Reprod Dev 63:60–66

    Google Scholar 

  9. Uesbeck M, Topp W (1995) The effect of leaf litter, microorganisms and Collembola on the food allocation of Oniscus asellus (Isopoda). Crustac Issue:121–132

  10. Bredon M, Herran B, Lheraud B, Bertaux J, Grève P, Moumen B, Bouchon D (2019) Lignocellulose degradation in isopods: new insights into the adaptation to terrestrial life. BMC Genomics 20:462

    PubMed  PubMed Central  Google Scholar 

  11. Sfenthourakis S, Hornung E (2018) Isopod distribution and climate change. ZooKeys 801:25–61

  12. Teuben A, Roelofsma TAPJ (1990) Dynamic interactions between functional groups of soil arthropods and microorganisms during decomposition of coniferous litter in microcosm experiments. Biol Fertil Soils 9:145–151

    CAS  Google Scholar 

  13. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Google Scholar 

  14. Verhoef H, Brussaard L (1990) Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochem. 11:175–211

    Google Scholar 

  15. Grandy AS, Wieder WR, Wickings K, Kyker-Snowman E (2016) Beyond microbes: are fauna the next frontier in soil biogeochemical models? Soil Biol. Biochem. 102:40–44

    CAS  Google Scholar 

  16. Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014

    CAS  Google Scholar 

  17. Hanlon RDG, Anderson JM (1980) Influence of macroarthropod feeding activities on microflora in decomposing oak leaves. Soil Biol Biochem 12:255–261

    Google Scholar 

  18. Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Google Scholar 

  19. Cragg RG, Bardgett RD (2001) How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol Biochem 33:2073–2081

    CAS  Google Scholar 

  20. Huhta V, Haimi J, Setälä H (1991) Role of the fauna in soil processes: techniques using simulated forest floor. Agric Ecosyst Environ 34:223–229

    Google Scholar 

  21. Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci 102:1519–1524

    PubMed  Google Scholar 

  22. Bray N, Kao-Kniffin J, Frey S, Fahey T, Wickings K (2019) Soil macroinvertebrate presence alters microbial community composition and activity in the rhizosphere. Front Microbiol 10:256

    PubMed  PubMed Central  Google Scholar 

  23. Quadros AF, Araujo PB (2008) An assemblage of terrestrial isopods (Crustacea) in southern Brazil and its contribution to leaf litter processing. Rev Bras Zool 25:58–66

    Google Scholar 

  24. Burke JL, Maerz JC, Milanovich JR, Fisk MC, Gandhi KJ (2011) Invasion by exotic earthworms alters biodiversity and communities of litter-and soil-dwelling oribatid mites. Diversity 3:155–175

    Google Scholar 

  25. Sackett TE, Smith SM, Basiliko N (2013) Indirect and direct effects of exotic earthworms on soil nutrient and carbon pools in North American temperate forests. Soil Biol Biochem 57:459–467

    CAS  Google Scholar 

  26. Ferlian O, Thakur MP, Castañeda González A, San Emeterio LM, Marr S, da Silva RB, Eisenhauer N (2019) Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties. Ecology 101(3):e02936

  27. McCay TS, Scull P (2019) Invasive lumbricid earthworms in northeastern North American forests and consequences for leaf-litter fauna. Biol Invasions 21:2081–2093

    Google Scholar 

  28. Hendrix PF, Bohlen PJ (2002) Exotic earthworm invasions in North America: ecological and policy implications. Biosci. 52:801–811

    Google Scholar 

  29. Alban DH, Berry EC (1994) Effects of earthworm invasion on morphology, carbon, and nitrogen of a forest soil. Appl Soil Ecol 1:243–249

    Google Scholar 

  30. Hassall M, Turner JG, Rands MRW (1987) Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 72:597–604

    CAS  PubMed  Google Scholar 

  31. Reis F, Nascimento E, Castro H, Canhoto C, Gonçalves AL, Simões S, García-Palacios P, Milla R, Sousa JP, da Silva PM (2018) Land management impacts on the feeding preferences of the woodlouse Porcellio dilatatus (Isopoda: Oniscidea) via changes in plant litter quality. Appl Soil Ecol 132:45–52

    Google Scholar 

  32. Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:288–388

    Google Scholar 

  33. Dilly O, Bartsch S, Rosenbrock P, Buscot F, Munch JC (2001) Shifts in physiological capabilities of the microbiota during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.) L.) forest. Soil Biol Biochem 33:921–930

    CAS  Google Scholar 

  34. Reichle DE (1977) The role of soil invertebrates in nutrient cycling. Ecol Bull 25:145–156

  35. Dunger FH (1983) Tiere im Boden. Die Neue-Brehm Buecherei 327. A. Ziemsen Verlag, Wittenberg-Lutherstadt

  36. Ristok C, Leppert KN, Scherer-Lorenzen M, Niklaus PA, Bruelheide H (2019) Soil macrofauna and leaf functional traits drive the decomposition of secondary metabolites in leaf litter. Soil Biol Biochem 135:429–437

    CAS  Google Scholar 

  37. Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley Jr D (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Google Scholar 

  38. David J-F (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118

    CAS  Google Scholar 

  39. Hanlon RDG, Anderson JM (1979) The effects of collembola grazing on microbial activity in decomposing leaf litter. Oecologia 38:93–99

    CAS  PubMed  Google Scholar 

  40. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Google Scholar 

  41. Ulyshen MD, Wagner TL (2013) Quantifying arthropod contributions to wood decay. Methods Ecol Evol 4:345–352

    Google Scholar 

  42. De Menezes AB, Prendergast-Miller MT, Macdonald LM, Toscas P, Baker G, Farrell M, Wark T, Richardson AE, Thrall PH (2018) Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations. FEMS Microbiol Ecol 94:fiy051

    Google Scholar 

  43. Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33:419–435

    Google Scholar 

  44. Kayang H, Sharma G, Mishra R (1996) The influence of isopod grazing on microbial dynamics in decomposing leaf litter of Alnus nepalensis D. Don. Eur J Soil Biol 32:35–40

    Google Scholar 

  45. Majed D, Wahiba Z, Fadhel BM, Sghaier AM (2018) Characterization of the dominant bacterial communities associated with terrestrial isopod species based on 16S rDNA analysis by PCR-DGGE. Open J Ecol 8:495–509

    Google Scholar 

  46. Ullrich B, Storch V, Schairer H (1991) Bacteria on the food, in the intestine and on the faeces of the woodlouse Oniscus asellus (Crustacea, Isopoda). Species composition and nutritive value. Pedobiologia 35:41–51

    Google Scholar 

  47. Zimmer M, Topp W (1999) Relationships between woodlice (Isopoda: Oniscidea) and microbial density and activity in the field. Biol Fertil Soils 30:117–123

    Google Scholar 

  48. Zimmer M, Topp W (2002) The role of coprophagy in nutrient release from feces of phytophagous insects. Soil Biol Biochem 34:1093–1099

    CAS  Google Scholar 

  49. Lavelle P, Decaëns T, Aubert M, Sb B, Blouin M, Bureau F, Margerie P, Mora P, Rossi J-P (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Google Scholar 

  50. Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev Camb Phil Soc 77:455–493

    Google Scholar 

  51. Gunnarsson T, Tunlid A (1986) Recycling of fecal pellets in isopods: microorganisms and nitrogen compounds as potential food for Oniscus asellus L. Soil Biol Biochem 18:595–600

    Google Scholar 

  52. Blagodatskaya EV, Anderson T-H (1998) Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO2 of microbial communities in forest soils. Soil Biol Biochem 30:1269–1274

    CAS  Google Scholar 

  53. Leff JW, Nemergut DR, Grandy AS, O’Neill SP, Wickings K, Townsend AR, Cleveland CC (2012) The effects of soil bacterial community structure on decomposition in a tropical rain forest. Ecosystems 15:284–298

    CAS  Google Scholar 

  54. Hedlund K, Augustsson A (1995) Effects of enchytraeid grazing on fungal growth and respiration. Soil Biol Biochem 27:905–909

    CAS  Google Scholar 

  55. Holtkamp R, Kardol P, van der Wal A, Dekker SC, van der Putten WH, de Ruiter PC (2008) Soil food web structure during ecosystem development after land abandonment. Appl Soil Ecol 39:23–34

    Google Scholar 

  56. Zimmer M, Kautz G, Topp W (2003) Leaf litter-colonizing microbiota: supplementary food source or indicator of food quality for Porcellio scaber (Isopoda: Oniscidea)? Eur J Soil Biol 39:209–216

    Google Scholar 

  57. Dudgeon D, Ma H, Lam P (1990) Differential palatability of leaf litter to four sympatric isopods in a Hong Kong forest. Oecologia 84:398–403

    CAS  PubMed  Google Scholar 

  58. Quadros AF, Caubet Y, Araujo PB (2009) Life history comparison of two terrestrial isopods in relation to habitat specialization. Acta Oecol 35:243–249

    Google Scholar 

  59. Wood CT, Araujo PB, Štrus J (2017) Morphology, microhabitat selection and life-history traits of two sympatric woodlice (Crustacea: Isopoda: Oniscidea): a comparative analysis. Zool Anz 268:1–10

    Google Scholar 

  60. Wijnhoven H (2000) Landpissebedden van de Ooijpolder: deel 1. verspreiding (Crustacea: Isopoda: Oniscidea). Ned Faunistische Meded 11:55–131

    Google Scholar 

  61. Warburg M, Linsenmair K, Bercovitz K (1984) The effect of climate on the distribution and abundance of isopods. Symposia of the Zoological Society of London, pp 339–367

  62. Brereton JLG (1957) The distribution of woodland isopods. Oikos 8:85–106

    Google Scholar 

  63. Warburg MR (1968) Behavioral adaptations of terrestrial isopods. Integr Comp Biol 8:545–559

    Google Scholar 

  64. Gerlach A, Russell D, Jaeschke B, Römbke J (2014) Feeding preferences of native terrestrial isopod species (Oniscoidea, Isopoda) for native and introduced leaf litter. Appl Soil Ecol 83:95–100

    Google Scholar 

  65. Crowther TW, Boddy L, Jones TH (2011) Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia 167:535–545

    PubMed  Google Scholar 

  66. Hopkin SP (1990) Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber. J Appl Ecol 27:460–474

    Google Scholar 

  67. Gunnarsson T (1987) Selective feeding on a maple leaf by Oniscus asellus (Isopoda). Pedobiologia 30:161–165

    Google Scholar 

  68. Hättenschwiler S, Bretscher D (2001) Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob Chang Biol 7:565–579

    Google Scholar 

  69. Wieser W, Schweizer G, Hartenstein R (1969) Patterns in the release of gaseous ammonia by terrestrial isopods. Oecologia 3:390–400

    CAS  PubMed  Google Scholar 

  70. Braun EL (1950) Deciduous forests of Eastern North America. London Publishing Co., New York

    Google Scholar 

  71. Trofymow JA, Preston CM, Prescott CE (1995) Litter quality and its potential effect on decay rates of materials from Canadian forests. Water Air Soil Pollut 82:215–226

    CAS  Google Scholar 

  72. Otis KV (2012) Leaf litter decomposition in vernal pools of a Central Ontario mixedwood forest. Dissertation, University of Guelph.

  73. Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Google Scholar 

  74. Brockett BF, Hassall M (2005) The existence of an Allee effect in populations of Porcellio scaber (Isopoda: Oniscidea). Eur J Soil Biol 41:123–127

    Google Scholar 

  75. Balkwill DL, Leach FR, Wilson JT, McNabb JF, White DC (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microb Ecol 16:73–84

    CAS  PubMed  Google Scholar 

  76. Edwards NT (1982) The use of soda-lime for measuring respiration rates in terrestrial systems. Pedobiologia 23:321–330

    CAS  Google Scholar 

  77. Gordon AM, Schlenter RE, van Cleve K (1987) Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska. Can J For Res 17:304–310

    Google Scholar 

  78. Jarvis B (1973) Comparison of an improved rose bengal-chlortetracycline agar with other media for the selective isolation and enumeration of moulds and yeasts in foods. J Appl Microbiol 36:723–727

    CAS  Google Scholar 

  79. Barron GL (1968) The genera of hyphomycetes from soil. Waverly Press Inc., Baltimore

    Google Scholar 

  80. Domsch KH, Gams W, Anderson TH (1995) Compendium of soil fungi. Lubrecht & Cramer Ltd., New York, pp 1,264

  81. Watanabe T (2002) Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC Press, New York

    Google Scholar 

  82. Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria, and actinomycetes on leaves cecomposing in a stream. Appl Environ Microbiol 73:756–767

    CAS  PubMed  Google Scholar 

  83. Dilly O, Bloem J, Vos A, Munch JC (2004) Bacterial diversity in agricultural soils during litter decomposition. Appl Environ Microbiol 70:468–474

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    CAS  PubMed  Google Scholar 

  85. Taylor SC, Berkelman T, Yadav G, Hammond M (2013) A defined methodology for reliable quantification of Western blot data. Mol Biotechnol 55:217–226

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.4-6. (https://CRAN.R-project.org/package = vegan)

  87. Zimmer M, Danko J, Pennings S, Danford A, Carefoot T, Ziegler A, Uglow R (2002) Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Mar Biol 140:1207–1213

    CAS  Google Scholar 

  88. Smith A, Zoetendal E, Mackie R (2005) Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol 50:197–205

    CAS  PubMed  Google Scholar 

  89. Zimmer M (1999) The fate and effects of ingested hydrolyzable tannins in Porcellio scaber. J Chem Ecol 25:611–628

    CAS  Google Scholar 

  90. Zimmer M, Topp W (1997) Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber (Crustacea: Isopoda)? Biol Fertil Soils 24:435–441

    CAS  Google Scholar 

  91. Neuhauser E, Hartenstein R (1976) Degradation of phenol, cinnamic acid and quinic acid in the terrestrial crustacean, Oniscus asellus. Soil Biol Biochem 8:95–98

    CAS  Google Scholar 

  92. Magan N, Lynch JM (1986) Water potential, growth and cellulolysis of fungi involved in decomposition of cereal residues. J Gen Microbiol 132:1181–1187

    CAS  Google Scholar 

  93. Broder MW, Wagner GH (1988) Microbial colonization and decomposition of corn, wheat, and soybean residue. Soil Sci Soc Am J 52:112–117

    Google Scholar 

  94. Kuter GA (1986) Microfungal populations associated with the decomposition of sugar maple leaf litter. Mycologia 78:114–126

    Google Scholar 

  95. Hering TF (1965) Succession of fungi in the litter of a lake district Oakwood. Trans Br Mycol Soc 48:391–408

    Google Scholar 

  96. Dittmer J, Lesobre J, Moumen B, Bouchon D (2016) Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare. FEMS Microbiol Ecol 92(5):fiw063

  97. Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    CAS  Google Scholar 

  98. Hoorens B, Aerts R, Stroetenga M (2002) Litter quality and interactive effects in litter mixtures: more negative interactions under elevated CO2? J Ecol 90:1009–1016

    Google Scholar 

  99. Fanin N, Hättenschwiler S, Barantal S, Schimann H, Fromin N (2011) Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? Soil Biol Biochem 43:1014–1022

    CAS  Google Scholar 

  100. Larkin R, Kelly J (1988) A short-term microcosm evaluation of CO2 evolution from litter and soil as influenced by SO2 and SO4 additions. Water Air Soil Pollut 37:273–280

    CAS  Google Scholar 

  101. McGonigle TP (2007) Effects of animals grazing on fungi. In: Kubicek CP, Druzhinina IS (eds) The mycota IV environmental and microbial relationships. Springer-Verlag, Berlin

    Google Scholar 

  102. Szlavecz K (1995) Diversity and spatial community structure of terrestrial isopods (Isopoda, Oniscidea) in a mosaic of plant assemblages. Crustac Issue 7:97–106

    Google Scholar 

  103. McGlynn TP, Poirson EK (2012) Ants accelerate litter decomposition in a Costa Rican lowland tropical rain forest. J Trop Ecol 28:437–443

    Google Scholar 

  104. Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JV, Brahamanage RS, Brooks S (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

  105. Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJ, Soares AM (2000) Soil and plant diet exposure routes and toxicokinetics of lindane in a terrestrial isopod. Environ Toxicol Chem 19:2557–2563

    CAS  Google Scholar 

  106. Achouri MS, Medini-Bouaziz L, Hamaied S, Charfi-Cheikhrouha F (2008) Diversity of terrestrial isopods at the Oued Laou region (Northeast of Morocco): preliminary results. Du bassin versant vers la mer: Analyse multidisciplinaire pour une gestion durable Travaux de l’Institut Scientifique, Rabat, Série générale 5: 75-79.

Download references

Acknowledgments

We would like to thank Shawn Lyons for assistance with experimental preparation and data collection, Kamini Khosla for assistance with DGGE, Moria Robinson for assistance with DGGE analysis, and Sarah Smith for fungal identification.

Funding

This research was supported by the University of Guelph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren E. Des Marteaux.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Des Marteaux, L.E., Kullik, S.A., Habash, M. et al. Terrestrial Isopods Porcellio scaber and Oniscus asellus (Crustacea: Isopoda) Increase Bacterial Abundance and Modify Microbial Community Structure in Leaf Litter Microcosms: a Short-Term Decomposition Study. Microb Ecol 80, 690–702 (2020). https://doi.org/10.1007/s00248-020-01527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01527-4

Keywords

Navigation