Skip to main content

Peatland Microbial Community Composition Is Driven by a Natural Climate Gradient

Abstract

Peatlands are important players in climate change–biosphere feedbacks via long-term net carbon (C) accumulation in soil organic matter and as potential net C sources including the potent greenhouse gas methane (CH4). Interactions of climate, site-hydrology, plant community, and groundwater chemical factors influence peatland development and functioning, including C dioxide (CO2) and CH4 fluxes, but the role of microbial community composition is not well understood. To assess microbial functional and taxonomic dissimilarities, we used high throughput sequencing of the small subunit ribosomal DNA (SSU rDNA) to determine bacterial and archaeal community composition in soils from twenty North American peatlands. Targeted DNA metabarcoding showed that although Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla on average, intermediate and rich fens hosted greater diversity and taxonomic richness, as well as an array of candidate phyla when compared with acidic and nutrient-poor poor fens and bogs. Moreover, pH was revealed to be the strongest predictor of microbial community structure across sites. Predictive metagenome content (PICRUSt) showed increases in specific genes, such as purine/pyrimidine and amino-acid metabolism in mid-latitude peatlands from 38 to 45° N, suggesting a shift toward utilization of microbial biomass over utilization of initial plant biomass in these microbial communities. Overall, there appears to be noticeable differences in community structure between peatland classes, as well as differences in microbial metabolic activity between latitudes. These findings are in line with a predicted increase in the decomposition and accelerated C turnover, and suggest that peatlands north of 37° latitude may be particularly vulnerable to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Dinel H, Mathur S, Brown A, Lέvesque M (1988) A field study of the effect of depth on methane production in peatland waters: equipment and preliminary results. J Ecol 76:1083–1091

    CAS  Google Scholar 

  2. 2.

    Tveit A, Schwacke R, Svenning MM, Urich T (2013) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7:299–311

    CAS  PubMed  Google Scholar 

  3. 3.

    Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    PubMed  Google Scholar 

  4. 4.

    Roulet NT, Lafleur PM, Richard PJ, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Chang Biol 13:397–411

    Google Scholar 

  5. 5.

    Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing. Chapter 2. Climate Change 2007 The Physical Science Basis

  6. 6.

    Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Glob Planet Chang 53:222–232

    Google Scholar 

  7. 7.

    Yavitt J (1994) Carbon dynamics in Appalachian peatlands of west Virginia and western Maryland. Water Air Soil Pollut 77:271–290

    CAS  Google Scholar 

  8. 8.

    Halsey LA, Vitt DH, Gignac LD (2000) Sphagnum-dominated peatlands in North America since the last glacial maximum: their occurrence and extent. Bryologist 334-352

  9. 9.

    Gajewski K, Viau A, Sawada M, Atkinson D, Wilson S (2001) Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Glob Biogeochem Cycles 15:297–310

    CAS  Google Scholar 

  10. 10.

    Pittillo JD (1994) Vegetation of three high elevation southern Appalachian bogs and implications of their vegetational history. Water Air Soil Pollut 77:333–348

    CAS  Google Scholar 

  11. 11.

    Delcourt PA, Delcourt HR (1984) Late quaternary paleoclimates and biotic responses in eastern North America and the western North Atlantic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 48:263–284

    Google Scholar 

  12. 12.

    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bradley C (2001) Wetlands by WJ Mitsch and JG Gosselink. Wiley, New York 2000. No of pages: 920

    Google Scholar 

  14. 14.

    Harbison AB, Carson MA, Lamit LJ, Basiliko N, Bräuer SL (2016) A novel isolate and widespread abundance of the candidate alphaproteobacterial order (Ellin 329), in southern Appalachian peatlands. FEMS Microbiol Lett 363

  15. 15.

    Watkinson AD, Lock AS, Beckett PJ, Spiers G (2017) Developing manufactured soils from industrial by-products for use as growth substrates in mine reclamation. Restor Ecol 25:587–594

    Google Scholar 

  16. 16.

    Bushnell B (2015) BBMap short-read aligner, and other bioinformatics tools. University of California, Berkeley

    Google Scholar 

  17. 17.

    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  20. 20.

    Cloutier mlc (2016) Microbial community analysis coupled with geochemical studies reveal factors affecting biotic mn (ii) oxidation in situ. Appalachian State University

  21. 21.

    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wickham H, Chang W (2008) ggplot2: an implementation of the grammar of graphics. R package version 07

  23. 23.

    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 13:1800–1814

    CAS  PubMed  Google Scholar 

  25. 25.

    Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, Plengvidhya V, Champreda V, Eurwilaichitr L (2011) Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb Ecol 61:518–528

    PubMed  Google Scholar 

  26. 26.

    Juottonen H, Eiler A, Biasi C, Tuittila E-S, Yrjälä K, Fritze H (2017) Distinct anaerobic bacterial consumers of cellobiose-derived carbon in boreal fens with different CO2/CH4 production ratios. Appl Environ Microbiol 83

  27. 27.

    Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton P, Imvittaya A, Chanton JP, Cooper W, Schadt C, Kostka JE (2014) Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl Environ Microbiol 80:3531–3540

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ivanova AA, Wegner CE, Kim Y, Liesack W, Dedysh SN (2016) Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol Ecol 25:4818–4835

    CAS  PubMed  Google Scholar 

  29. 29.

    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    PubMed  Google Scholar 

  31. 31.

    Matthies C, Erhard HP, Drake HL (1997) Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J Basic Microbiol 37:335–343

    CAS  Google Scholar 

  32. 32.

    Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Chang Biol 14:1156–1168

    Google Scholar 

  33. 33.

    Kim S-Y, Lee S-H, Freeman C, Fenner N, Kang H (2008) Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Soil Biol Biochem 40:2874–2880

    CAS  Google Scholar 

  34. 34.

    Lin X, Green S, Tfaily M, Prakash O, Konstantinidis K, Corbett J, Chanton J, Cooper W, Kostka J (2012) Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microbiol 78:7023–7031

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Thrash JC, Seitz KW, Baker BJ, Temperton B, Gillies LE, Rabalais NN, Henrissat B, Mason OU (2017) Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico “Dead Zone”

  36. 36.

    Castelle CJ, Hug LA, Wrighton KC, Thomas BC, Williams KH, Wu D, Tringe SG, Singer SW, Eisen JA, Banfield JF (2013) Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat Commun 4:2120

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rodrigues VD, Torres TT, Ottoboni LM (2014) Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons. Antonie Van Leeuwenhoek 106:879–890

    CAS  PubMed  Google Scholar 

  38. 38.

    Warren LA, Kendra KE, Brady AL, Slater GF (2016) Sulfur biogeochemistry of an oil sands composite tailings deposit. Front Microbiol 6:1533

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Youssef NH, Blainey PC, Quake SR, Elshahed MS (2011) Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl Environ Microbiol 77:7804–7814

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Youssef NH, Farag IF, Rinke C, Hallam SJ, Woyke T, Elshahed MS (2015) In Silico analysis of the metabolic potential and niche specialization of candidate phylum “Latescibacteria”(WS3). PLoS One 10:e0127499

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lee KC-Y, Herbold C, Dunfield PF, Morgan XC, McDonald IR, Stott MB (2013) Phylogenetic delineation of the novel phylum Armatimonadetes (former candidate division OP10) and definition of two novel candidate divisions. Appl Environ Microbiol 79:2484–2487

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Nogales B, Moore ER, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    CAS  PubMed  Google Scholar 

  44. 44.

    Francis CA, Beman JM, Kuypers MM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27

    CAS  PubMed  Google Scholar 

  45. 45.

    Carlström CI, Lucas LN, Rohde RA, Haratian A, Engelbrektson AL, Coates JD (2016) Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Appl Microbiol Biotechnol 100:9719–9732

    PubMed  Google Scholar 

  46. 46.

    Chen L-X, Méndez-García C, Dombrowski N, Servín-Garcidueñas LE, Eloe-Fadrosh EA, Fang B-Z, Luo Z-H, Tan S, Zhi X-Y, Hua Z-S, Martinez-Romero E, Woyke T, Huang L-N, Sánchez J, Peláez AI, Ferrer M, Baker BJ, Shu W-S (2017) Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. ISME J

  47. 47.

    Zinder SH (1993) Physiological ecology of methanogens Methanogenesis. Springer, pp 128–206

  48. 48.

    Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Curr Biol 28:R727–R732

    CAS  PubMed  Google Scholar 

  49. 49.

    Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD (2012) pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient. Soil Biol Biochem 54:36–47

    CAS  Google Scholar 

  50. 50.

    Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci 112:E2507–E2516

    CAS  PubMed  Google Scholar 

  52. 52.

    Wright A, Reddy K (2001) Heterotrophic microbial activity in northern Everglades wetland soils. Soil Sci Soc Am J 65:1856–1864

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James Seward.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Supp. Fig. 1
figure5

Peatland classification based on the relationship between pH and calcium (Ca) content (PNG 4517 kb)

Supp. Fig. 2
figure6

Non-metric multidimensional scaling (NMDS) biplot of temperature, pH, Ca, Ni, K, Mg, Co, and Na (PNG 6168 kb)

Supp. Fig. 3
figure7

Taxonomic bar plot showing relative abundance values (%) for domain-level classification of bacterial and archaeal sequences at 10, 30, and 60-cm depth across 20 peatland areas (PNG 3102 kb)

High resolution image (TIFF 853 kb)

High resolution image (TIFF 260 kb)

High resolution image (TIFF 1545 kb)

Supp. Fig. 4

Taxonomic bar plot showing relative abundance values (%) for phylum-level classification for bacterial and archaeal sequences at a 10-cm depth across 20 peatland areas (PDF 184 kb)

Supp. Fig. 5

Taxonomic bar plot showing relative abundance values (%) for phylum-level classification for bacterial and archaeal sequences at a 30-cm depth across 20 peatland areas (PDF 185 kb)

Supp. Fig. 6

Taxonomic bar plot showing relative abundance values (%) for phylum-level classification for bacterial and archaeal sequences at a 60-cm depth across 20 peatland areas (PDF 163 kb)

ESM 1

(XLSM 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seward, J., Carson, M.A., Lamit, L.J. et al. Peatland Microbial Community Composition Is Driven by a Natural Climate Gradient. Microb Ecol 80, 593–602 (2020). https://doi.org/10.1007/s00248-020-01510-z

Download citation

Keywords

  • Peatlands
  • Microbiology
  • Carbon cycling
  • Climate change