Skip to main content

Advertisement

Log in

Spatial Distribution Patterns of Bacterioplankton in the Oxygen Minimum Zone of the Tropical Mexican Pacific

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial communities within oxygen minimum zones (OMZs) are crucial drivers of marine biogeochemical cycles; however, we still lack an understanding of how these communities are distributed across an OMZ. We explored vertical (from 5 to 500 m depth) and horizontal (coast to open ocean) distribution of bacterioplankton and its relationships with the main oceanographic conditions in three transects of the tropical Mexican Pacific OMZ. The distribution of the microbial diversity and the main clades changed along the transition from oxygen-rich surface water to the OMZ core, demonstrating the sensitivity of key bacterial groups to deoxygenation. The euphotic zone was dominated by Synechococcales, followed by Flavobacteriales, Verrucomicrobiales, Rhodobacterales, SAR86, and Cellvibrionales, whereas the OMZ core was dominated by SAR11, followed by SAR406, SAR324, SAR202, UBA10353 marine group, Thiomicrospirales and Nitrospinales. The marked environmental gradients along the water column also supported a high potential for niche partitioning among OMZ microorganisms. Additionally, in the OMZ core, bacterial assemblages from the same water mass were more similar to each other than those from another water mass. There were also important differences between coastal and open-ocean communities: Flavobacteriales, Verrucomicrobiales, Rhodobacterales, SAR86, and Cellvibrionales were more abundant in coastal areas, while Synechococcales, SAR406, SAR324, SAR202, UBA10353 marine group, and Thiomicrospirales were more abundant in the open ocean. Our results suggest a biogeographic structure of the bacterioplankton in this OMZ region, with limited community mixing across water masses, except in upwelling events, and little dispersion of the community by currents in the euphotic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol 10:381–394. https://doi.org/10.1038/nrmicro2778

    Article  CAS  PubMed  Google Scholar 

  2. Hutchins DA, Fu F (2017) Microorganisms and ocean global change. Nat Microbiol 2:17058. https://doi.org/10.1038/nmicrobiol.2017.58

    Article  CAS  PubMed  Google Scholar 

  3. Penn JL, Weber T, Chang BX, Deutsch C (2019) Microbial ecosystem dynamics drive fluctuating nitrogen loss in marine anoxic zones. Proc Natl Acad Sci 116:7220–7225. https://doi.org/10.1073/pnas.1818014116

    Article  CAS  PubMed  Google Scholar 

  4. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791. https://doi.org/10.1038/nrmicro1747

    Article  CAS  PubMed  Google Scholar 

  5. Fuhrman J, Steele J (2008) Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat Microb Ecol 53:69–81. https://doi.org/10.3354/ame01222

    Article  Google Scholar 

  6. Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ (2012) Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci 109:15996–16003. https://doi.org/10.1073/pnas.1205009109

    Article  PubMed  Google Scholar 

  7. Flombaum P (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci 110:9824–9829. https://doi.org/10.1073/pnas.1307701110

    Article  CAS  PubMed  Google Scholar 

  8. Sunagawa S, Coelho LP, Chaffron S et al (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348:1261359. https://doi.org/10.1126/science.1261359

    Article  CAS  PubMed  Google Scholar 

  9. Djurhuus A, Boersch-Supan PH, Mikalsen SO, Rogers AD (2017) Microbe biogeography tracks water masses in a dynamic oceanic frontal system. R Soc Open Sci 4:170033. https://doi.org/10.1098/rsos.170033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Easson CG, Lopez JV (2019) Depth-dependent environmental drivers of microbial plankton community structure in the northern gulf of Mexico. Front Microbiol 9:3175. https://doi.org/10.3389/fmicb.2018.03175

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paulmier A, Ruiz-Pino D (2009) Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr 80:113–128. https://doi.org/10.1016/j.pocean.2008.08.001

    Article  Google Scholar 

  12. Tiano L, Garcia-Robledo E, Dalsgaard T et al (2014) Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones. Deep Res Part I Oceanogr Res Pap 94:173–183. https://doi.org/10.1016/j.dsr.2014.10.001

    Article  CAS  Google Scholar 

  13. Garcia-Robledo E, Padilla CC, Stewart FJ, Ulloa O (2017) Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci 114:8319–8324. https://doi.org/10.1073/pnas.1619844114

    Article  CAS  PubMed  Google Scholar 

  14. Goericke R, Olson RJ, Shalapyonok A (2000) A novel niche for Prochlorococcus sp. in low-light suboxic envrionrments in the Arabian Sea and the eastern tropical North Pacific. Deep Res Part I Oceanogr Res Pap 47:1183–1205. https://doi.org/10.1016/S0967-0637(99)00108-9

    Article  Google Scholar 

  15. Santana-Vega Z, Hernández-Becerril DU, Morales-Blake AR et al (2018) Prokaryotic picoplankton distribution within the oxygen minimum zone of the central Mexican Pacific across environmental gradients. Braz J Oceanogr 66:157–171. https://doi.org/10.1590/S1679-87592018004806602

    Article  Google Scholar 

  16. Keeling RE, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229. https://doi.org/10.1146/annurev.marine.010908.163855

    Article  Google Scholar 

  17. Rabalais NN, Díaz RJ, Levin LA et al (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619. https://doi.org/10.5194/bg-7-585-2010

    Article  CAS  Google Scholar 

  18. Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. Deep Res Part I Oceanogr Res Pap 57:587–595. https://doi.org/10.1016/j.dsr.2010.01.005

    Article  CAS  Google Scholar 

  19. Ganesh S, Parris DJ, DeLong EF, Stewart FJ (2014) Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J 8:187–211. https://doi.org/10.1038/ismej.2013.144

    Article  CAS  PubMed  Google Scholar 

  20. Fuchsman CA, Devol AH, Saunders JK, McKay C, Rocap G (2017) Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front Microbiol 8:2384. https://doi.org/10.3389/fmicb.2017.02384

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bertagnolli AD, Stewart FJ (2018) Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol 16:723–729. https://doi.org/10.1038/s41579-018-0087-z

    Article  CAS  PubMed  Google Scholar 

  22. Glass JB, Kretz CB, Ganesh S, Ranjan P, Seston SL, Buck KN, Landing WM, Morton PL, Moffett JW, Giovannoni SJ, Vergin KL, Stewart FJ (2015) Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones. Front Microbiol 6:998. https://doi.org/10.3389/fmicb.2015.00998

    Article  PubMed  PubMed Central  Google Scholar 

  23. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One 9:e105592. https://doi.org/10.1371/journal.pone.0105592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  PubMed  Google Scholar 

  25. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver L, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson 2nd MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft J, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marie D, Partensky F, Vaulot D, Brussaard C (2001) Enumeration of phytoplankton, bacteria, and viruses in marine samples. Curr Protoc Cytom 10:1–11. https://doi.org/10.1002/0471142956.cy1111s10

    Article  Google Scholar 

  28. Schlitzer R (2015) Data analysis and visualization with ocean data view. C Bull SCMO 43:9–13

    Google Scholar 

  29. Portela E, Beier E, Barton ED et al (2016) Water masses and circulation in the tropical Pacific off Central Mexico and surrounding areas. J Phys Oceanogr 46:3069–3081. https://doi.org/10.1175/JPO-D-16-0068.1

    Article  Google Scholar 

  30. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth 192 p

    Google Scholar 

  31. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:1–17. https://doi.org/10.1186/s40168-018-0470-z

    Article  Google Scholar 

  32. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  33. R Core Team (2019) R: a language and environment for statistical computing. R Found Stat Comput Viena: <http://www.Rproject.org>. doi: https://doi.org/10.1038/sj.hdy.6800737

  34. Lenth R V. (2016) Least-squares means: the R package lsmeans. J Stat Softw. doi: https://doi.org/10.18637/jss.v069.i01

  35. Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69:143–180. https://doi.org/10.1016/j.pocean.2006.03.008

    Article  Google Scholar 

  36. Cepeda-Morales J, Gaxiola-Castro G, Beier E, Godínez VM (2013) The mechanisms involved in defining the northern boundary of the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico. Deep Res Part I Oceanogr Res Pap. https://doi.org/10.1016/j.dsr.2013.02.004

  37. Cepeda-Morales J, Beier E, Gaxiola-Castro G et al (2009) Effect of the oxygen minimum zone on the second chlorophyll maximum in the eastern tropical Pacific off Mexico. Ciencias Mar 35:389–403. https://doi.org/10.7773/cm.v35i4.1622

    Article  CAS  Google Scholar 

  38. López-Sandoval DJ, Lara-Lara R, Lavín MF, Álvarez-Borrego S, Gaxiola-Castro G (2017) Primary productivity observations in the eastern tropical Pacific off Cabo Corrientes, Mexico. Ciencias Mar 35:169–182. https://doi.org/10.7773/cm.v35i2.1530

    Article  Google Scholar 

  39. Pajares S, Soto-Jiménez MF, Merino-Ibarra M (2019) Molecular and isotopic evidence of the distribution of nitrogen-cycling microbial communities in the oxygen minimum zone of the tropical Mexican Pacific. FEMS Microbiol Ecol 95:fiz143. https://doi.org/10.1093/femsec/fiz143

    Article  CAS  PubMed  Google Scholar 

  40. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    Article  CAS  Google Scholar 

  41. Giovannoni SJ (2017) SAR11 Bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sci 9:231–255. https://doi.org/10.1146/annurev-marine-010814-015934

    Article  Google Scholar 

  42. Delong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–504. https://doi.org/10.1126/science.1120250

    Article  CAS  PubMed  Google Scholar 

  43. Treusch AH, Vergin KL, Finlay LA, Donatz MG, Burton RM, Carlson CA, Giovannoni SJ (2009) Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J 3:1148–1163. https://doi.org/10.1038/ismej.2009.60

    Article  PubMed  Google Scholar 

  44. Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, Ranjan P, Sarode N, Malmstrom RR, Padilla CC, Stone BK, Bristow LA, Larsen M, Glass JB, Thamdrup B, Woyke T, Konstantinidis KT, Stewart FJ (2016) SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536:179–183. https://doi.org/10.1038/nature19068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beman JM, Carolan MT (2013) Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone. Nat Commun 4:2705. https://doi.org/10.1038/ncomms3705

    Article  CAS  PubMed  Google Scholar 

  46. Stevens H, Ulloa O (2008) Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol 10:1244–1259. https://doi.org/10.1111/j.1462-2920.2007.01539.x

    Article  CAS  PubMed  Google Scholar 

  47. Lüke C, Speth DR, Kox MAR, Villanueva L, Jetten MSM (2016) Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ 4:e1924. https://doi.org/10.7717/peerj.1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fuchsman CA, Kirkpatrick JB, Brazelton WJ, Murray JW, Staley JT (2011) Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol 78:586–603. https://doi.org/10.1111/j.1574-6941.2011.01189.x

    Article  CAS  PubMed  Google Scholar 

  49. Ganesh S, Bristow LA, Larsen M, Sarode N, Thamdrup B, Stewart FJ (2015) Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J 9:2682–2696. https://doi.org/10.1038/ismej.2015.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326:578–582. https://doi.org/10.1126/science.1175309

    Article  CAS  PubMed  Google Scholar 

  51. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED, Gomez ML, Sieracki ME, DeLong E, Herndl GJ, Stepanauskas R (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–1300. https://doi.org/10.1126/science.1203690

    Article  CAS  PubMed  Google Scholar 

  52. Sheik CS, Jain S, Dick GJ (2014) Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol 16:304–317. https://doi.org/10.1111/1462-2920.12165

    Article  CAS  PubMed  Google Scholar 

  53. Carolan MT, Smith J, Beman JM (2015) Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front Microbiol 6:334. https://doi.org/10.3389/fmicb.2015.00334

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, Woebken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glöckner FO (2006) Whole genome analysis of the marine Bacteroidetes “Gramella forsetii” reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213. https://doi.org/10.1111/j.1462-2920.2006.01152.x

    Article  CAS  PubMed  Google Scholar 

  55. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL, Lasken RS, Nealson K, Friedman R, Venter JC (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–1199. https://doi.org/10.1038/ismej.2011.189

    Article  CAS  PubMed  Google Scholar 

  56. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MS (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611. https://doi.org/10.1038/nature01526.1

    Article  CAS  PubMed  Google Scholar 

  57. Kong L, Jing H, Kataoka T, Buchwald C, Liu H (2013) Diversity and spatial distribution of hydrazine oxidoreductase (hzo) gene in the oxygen minimum zone off Costa Rica. PLoS One 8:e78275. https://doi.org/10.1371/journal.pone.0078275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MS, Kuypers MM (2011) Intensive nitrogen loss over the Omani shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J 5:1660–1670. https://doi.org/10.1038/ismej.2011.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Woebken D, Lam P, Kuypers MMM, Naqvi SW, Kartal B, Strous M, Jetten MS, Fuchs BM, Amann R (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119. https://doi.org/10.1111/j.1462-2920.2008.01640.x

    Article  CAS  PubMed  Google Scholar 

  60. Kalvelage T, Lavik G, Jensen MM, Revsbech NP, Löscher C, Schunck H, Desai DK, Hauss H, Kiko R, Holtappels M, LaRoche J, Schmitz RA, Graco MI, Kuypers MM (2015) Aerobic microbial respiration in oceanic oxygen minimum zones. PLoS One 10:e0133526. https://doi.org/10.1371/journal.pone.0133526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MS, Kuypers MM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci 106:4752–4757. https://doi.org/10.1073/pnas.0812444106

    Article  PubMed  Google Scholar 

  62. Zhang CL, Xie W, Martin-Cuadrado AB, Rodriguez-Valera F (2015) Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol 6:1108. https://doi.org/10.3389/fmicb.2015.01108

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, Brown M, Jeffries T, Tyson GW, Seymour JR, Hugenholtz P (2018) A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J 13:663–675. https://doi.org/10.1038/s41396-018-0282-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere M, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci 106:15527–15533. https://doi.org/10.1073/pnas.0903507106

    Article  PubMed  Google Scholar 

  65. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12:686–698. https://doi.org/10.1038/nrmicro3326

    Article  CAS  PubMed  Google Scholar 

  66. Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J (2009) Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol 11:2078–2093. https://doi.org/10.1111/j.1462-2920.2009.01929.x

    Article  CAS  PubMed  Google Scholar 

  67. Seo JH, Kang I, Yang SJ, Cho JC (2017) Characterization of spatial distribution of the bacterial community in the South Sea of Korea. PLoS One 12:e0174159. https://doi.org/10.1371/journal.pone.0174159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linacre L, Lara-Lara R, Camacho-Ibar V et al (2015) Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions. Deep Res Part I Oceanogr Res Pap 106:55–67. https://doi.org/10.1016/j.dsr.2015.09.009

    Article  CAS  Google Scholar 

  69. Bergo NM, Signori CN, Amado AM et al (2017) The partitioning of carbon biomass among the pico- and nano-plankton community in the South Brazilian Bight during a strong summer intrusion of South Atlantic Central Water. Front Mar Sci 4:1–12. https://doi.org/10.3389/fmars.2017.00238

    Article  Google Scholar 

  70. Martiny AC, Tai APK, Veneziano D, Primeau F, Chisholm SW (2009) Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ Microbiol 11:823–832. https://doi.org/10.1111/j.1462-2920.2008.01803.x

    Article  PubMed  Google Scholar 

  71. Lam P, Jensen MM, Kock A et al (2011) Origin and fate of the secondary nitrite maximum in the Arabian Sea. Biogeosciences 8:1565–1577. https://doi.org/10.5194/bg-8-1565-2011

    Article  CAS  Google Scholar 

  72. Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F (2007) Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259. https://doi.org/10.1186/gb-2007-8-12-r259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bird C, Wyman M (2003) Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp. strain WH 8103: effect of nitrogen source and availability on gene expression. Appl Environ Microbiol 69:7009–7018. https://doi.org/10.1128/AEM.69.12.7009-7018.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Collado-Fabbri S, Vaulot D, Ulloa O (2011) Structure and seasonal dynamics of the eukaryotic picophytoplankton community in a wind-driven coastal upwelling ecosystem. Limnol Oceanogr 56:2334–2346. https://doi.org/10.4319/lo.2011.56.6.2334

    Article  CAS  Google Scholar 

  75. Hernández-Ruiz M, Barber-Lluch E, Prieto A, Álvarez-Salgado XA, Logares R, Teira E (2018) Seasonal succession of small planktonic eukaryotes inhabiting surface waters of a coastal upwelling system. Environ Microbiol 20:2955–2973. https://doi.org/10.1111/1462-2920.14313

    Article  CAS  PubMed  Google Scholar 

  76. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci 105:7774–7778. https://doi.org/10.1073/pnas.0803070105

    Article  PubMed  Google Scholar 

  77. Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, Tunlid A, Hagström A (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880. https://doi.org/10.1111/j.1365-294X.2006.03189.x

    Article  CAS  PubMed  Google Scholar 

  78. Aldunate M, De la Iglesia R, Bertagnolli AD, Ulloa O (2018) Oxygen modulates bacterial community composition in the coastal upwelling waters off central Chile. Deep Res Part II Top Stud Oceanogr 156:68–79. https://doi.org/10.1016/j.dsr2.2018.02.001

    Article  CAS  Google Scholar 

  79. Bryant JA, Stewart FJ, Eppley JM, Delong EF (2012) Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology 93:1659–1673. https://doi.org/10.1890/11-1204.1

    Article  PubMed  Google Scholar 

  80. Lavin P, González B, Santibañez JF et al (2010) Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep 2:728–738. https://doi.org/10.1111/j.1758-2229.2010.00167.x

    Article  CAS  PubMed  Google Scholar 

  81. Stewart FJ, Ulloa O, Delong EF (2012) Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ Microbiol 14:23–40. https://doi.org/10.1111/j.1462-2920.2010.02400.x

    Article  CAS  PubMed  Google Scholar 

  82. Yu Z, Yang J, Liu L, Zhang W, Amalfitano S (2015) Bacterioplankton community shifts associated with epipelagic and mesopelagic waters in the Southern Ocean. Sci Rep 5:12897. https://doi.org/10.1038/srep12897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20:258–274. https://doi.org/10.1111/j.1365-294X.2010.04932.x

    Article  PubMed  Google Scholar 

  84. Pinhassi J, Winding A, Binnerup SJ et al (2003) Spatial variability in bacterioplankton community composition at the Skagerrak-Kattegat front. Mar Ecol Prog Ser 255:1–13. https://doi.org/10.3354/meps255001

    Article  CAS  Google Scholar 

  85. Friedline CJ, Franklin RB, McCallister SL, Rivera MC (2012) Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures. Biogeosciences 9:2177–2193. https://doi.org/10.5194/bg-9-2177-2012

    Article  Google Scholar 

  86. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795

    Article  CAS  PubMed  Google Scholar 

  87. Ahlgren NA, Rocap G (2006) Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72:7193–7204. https://doi.org/10.1128/AEM.00358-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Johnson ZI, Zinser ER, Coe A, McNulty N, Woodward EM, Chisholm SW (2006) Partitioning among Prochlorococcus ecotypes along environmental gradients. Science 311:1737–1740. https://doi.org/10.1126/science.1118052

    Article  CAS  PubMed  Google Scholar 

  89. Rocap G, Distel D, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191. https://doi.org/10.1128/AEM.68.3.1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047. https://doi.org/10.1038/nature01947

    Article  CAS  PubMed  Google Scholar 

  91. Ahlgren NA, Rocap G (2012) Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol 3:213. https://doi.org/10.3389/fmicb.2012.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tai V, Palenik B (2009) Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J 3:903–915. https://doi.org/10.1038/ismej.2009.35

    Article  CAS  PubMed  Google Scholar 

  93. Coutinho F, Tschoeke DA, Thompson F, Thompson C (2016) Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ 4:e1522. https://doi.org/10.7717/peerj.1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vergin KL, Beszteri B, Monier A, Thrash JC, Temperton B, Treusch AH, Kilpert F, Worden AZ, Giovannoni SJ (2013) High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series study site by phylogenetic placement of pyrosequences. ISME J 7:1322–1332. https://doi.org/10.1038/ismej.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all participants of the oceanographic cruise “MareaR VIII,” including the captain and crew. Dr. Fernando Aguirre-Bahena (CICIMAR) generously lent the CTD equipment used during the cruise. We acknowledge Dr. Ann Grant through the “Posgrado de Ciencias del Mar y Limnología” (UNAM) for the English revision of this manuscript.

Funding

Funding for this work was granted by PAPIIT-UNAM No. IA201617. The ship time of the research cruise “MAREAR-VIII” on board the R/V “El Puma” was funded by the Coordinación de la Investigación Científica (UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Pajares.

Electronic Supplementary Material

ESM 1

(DOCX 5.99 MB)

ESM 2

(DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajares, S., Varona-Cordero, F. & Hernández-Becerril, D.U. Spatial Distribution Patterns of Bacterioplankton in the Oxygen Minimum Zone of the Tropical Mexican Pacific. Microb Ecol 80, 519–536 (2020). https://doi.org/10.1007/s00248-020-01508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01508-7

Keywords

Navigation