Skip to main content
Log in

Differential Effects of Phosphorus Fertilization on Plant Uptake and Rhizosphere Microbiome of Cultivated and Non-cultivated Potatoes

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

There is evidence that shows that phosphorus (P) fertilization has a moderate effect on the rhizosphere microbial composition of cultivated crops. But how this effect is manifested on wild species of the same crop is not clear. This study compares the impact of phosphorus fertilization with rhizosphere bacterial community composition and its predicted functions, related to P-cycling genes, in both cultivated and non-cultivated potato (Solanum sp.) plants. It was found that the biomass of non-cultivated potatoes was more responsive to P fertilization as compared with cultivated plants. Differences in general bacterial community composition patterns under increasing P amendments were subtle for both potato groups. However, potato genotype significantly influenced community composition with several bacterial families being more abundant in the cultivated plants. In addition, the predicted phosphatases had lower abundances in modern cultivars compared with non-cultivated potatoes. In summary, despite higher accumulation of differentially abundant bacteria in the rhizosphere of cultivated plants, the responsiveness of these plants to increase P levels was lower than in non-cultivated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5):489–499

    Google Scholar 

  2. Van Der Heijden MG, Scheublin TR (2007) Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174(2):244–250

    Google Scholar 

  3. Junaidi J, Kallenbach CM, Byrne PF, Fonte SJ (2018) Root traits and root biomass allocation impact how wheat genotypes respond to organic amendments and earthworms. PLoS One 13(7):e0200646

    PubMed  PubMed Central  Google Scholar 

  4. Sessitsch A, Gyamfi S, Tscherko D, Gerzabek MH, Kandeler E (2005) Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant Soil 266(1–2):105–116

    Google Scholar 

  5. Garbeva P, Van Elsas JD, Van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302(1–2):19–32

    CAS  Google Scholar 

  6. Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health B 45(5):348–359

    CAS  PubMed  Google Scholar 

  7. Syers, J. K., Johnston, A. E., & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin, 18(108)

    Google Scholar 

  8. Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Micronutrients. Soil Fertility and Fertilizers. Pearson Education Inc., and Dorling Kindersley Publishing Inc. India

  9. Wolf J, De Wit CT, Janssen BH, Lathwell DJ (1987) Modeling long-term crop response to fertilizer phosphorus. I. the model 1. Agron J 79(3):445–451

    Google Scholar 

  10. Tilman D, Fargione J, Wolff B, D'antonio C, Dobson A, Howarth R et al (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284

    CAS  PubMed  Google Scholar 

  11. Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537

    CAS  PubMed  Google Scholar 

  12. Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci 109(16):6348–6353

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Q, Ma M, Jiang X, Guan D, Wei D, Zhao B et al (2019) Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China. Appl Soil Ecol 136:148–157

    Google Scholar 

  14. Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME et al (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543(7646):513–518

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B et al (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci 114(46):E9999–E10008

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  17. Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54(23):8655–8681

    CAS  PubMed  Google Scholar 

  18. Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321(1–2):409

    CAS  Google Scholar 

  19. Perez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90(6):635–644

    CAS  PubMed  Google Scholar 

  20. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    CAS  PubMed  Google Scholar 

  21. Pantigoso HA, Manter DK, Vivanco JM (2018) Phosphorus addition shifts the microbial community in the rhizosphere of blueberry (Vaccinium corymbosum L.). Rhizosphere 7:1–7

    Google Scholar 

  22. Williams A, Manoharan L, Rosenstock NP, Olsson PA, Hedlund K (2017) Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. The New Phytologist 213(2):874–885

    CAS  PubMed  Google Scholar 

  23. Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2(2):131–141

    CAS  PubMed  Google Scholar 

  24. Van Deynze A, Zamora P, Delaux PM, Heitmann C, Jayaraman D, Rajasekar S et al (2018) Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16(8):e2006352

    PubMed  PubMed Central  Google Scholar 

  25. İnceoğlu Ö, Al-Soud WA, Salles JF, Semenov AV, van Elsas JD (2011) Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 6(8):e23321

    PubMed  PubMed Central  Google Scholar 

  26. Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75(3):497–506

    CAS  PubMed  Google Scholar 

  27. Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LF, de Hollander M, Garcia AA et al (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J 11(10):2244–2257

    PubMed  PubMed Central  Google Scholar 

  28. Essah SYC, Davis JG (1996) Fertilizing potatoes in Colorado, 0.541. Colorado State University. https://extension.colostate.edu/docs/pubs/crops/00541.pdf. Accessed 26 August 2019

  29. Lynch JM (1984) The rhizosphere form and function. Appl Soil Ecol 1193

  30. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82(20):6955–6959

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64(2):795–799

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilbert JA, Jansson JK, Knight R (2014) The earth microbiome project: successes and aspirations. BMC Biol 12(1):69

    PubMed  PubMed Central  Google Scholar 

  33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Manter DK, Korsa M, Tebbe C, Delgado JA (2016) myPhyloDB: a local web server for the storage and analysis of metagenomic data. Database 2016

  35. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Google Scholar 

  36. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    PubMed  PubMed Central  Google Scholar 

  37. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  Google Scholar 

  39. Rosen CJ, Kelling KA, Stark JC, Porter GA (2014) Optimizing phosphorus fertilizer management in potato production. Am J Potato Res 91(2):145–160

    CAS  Google Scholar 

  40. Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89(3):773–781

    PubMed  Google Scholar 

  41. Bodenhausen N, Somerville V, Desirò A, Walser JC, Borghi L, van der Heijden MG, Schlaeppi K (2019) Petunia-and Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes J, PBIOMES-12

  42. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110(16):6548–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaminsky LM, Thompson GL, Trexler RV, Bell TH, Kao-Kniffin J (2018) Medicago sativa has reduced biomass and nodulation when grown with soil microbiomes conditioned to high phosphorus inputs. Phytobiomes (ja)

  44. Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71(3):512–518

    Google Scholar 

  45. Mutch LA, Young JPW (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 13(8):2435–2444

    CAS  PubMed  Google Scholar 

  46. Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236

    Google Scholar 

  47. Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014) Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol Fertil Soils 50(2):405–414

    CAS  Google Scholar 

  48. Emmett BD, Buckley DH, Smith ME, Drinkwater LE (2018) Eighty years of maize breeding alters plant nitrogen acquisition but not rhizosphere bacterial community composition. Plant Soil. https://doi.org/10.1007/s11104-018-3744-0

  49. Fanin N, Hättenschwiler S, Schimann H, Fromin N (2015) Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest. Funct Ecol 29(1):140–150

    Google Scholar 

  50. Trabelsi D, Cherni A, Zineb AB, Dhane SF, Mhamdi R (2017) Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities. Appl Soil Ecol 114:1–8

    Google Scholar 

  51. Spiers GA, McGill WB (1979) Effects of phosphorus addition and energy supply on acid phosphatase production and activity in soils. Soil Biol Biochem 11(1):3–8

    CAS  Google Scholar 

  52. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6(5):1007

    CAS  PubMed  Google Scholar 

  53. Liu XJA, van Groenigen KJ, Dijkstra P, Hungate BA (2017) Increased plant uptake of native soil nitrogen following fertilizer addition–not a priming effect? Appl Soil Ecol 114:105–110

    Google Scholar 

  54. Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84(5):1277–1287

    Google Scholar 

  55. Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu YG, Chu H (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7:143. https://doi.org/10.1186/s40168-019-0757-8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Preece C, Peñuelas J (2019) A return to the wild: root exudates and food security. Trends Plant Sci

  57. Liu J, Cade-Menun BJ, Yang J, Hu Y, Liu CW, Tremblay J et al (2018) Long-term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils. Front Microbiol 9:1643

    PubMed  PubMed Central  Google Scholar 

  58. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):447–453

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Havlin JL, Beaton JD, Tisdale SL, Nelson WL (1999) Soil fertility and fertilizers6th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  60. Guang-Can TAO, Shu-Jun TIAN, Miao-Ying CAI, Guang-Hui XIE (2008) Phosphate-solubilizing and-mineralizing abilities of bacteria isolated from soils. Pedosphere 18(4):515–523

    Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Steve Fonte and Dr. Ioannis Minas for reviewing the manuscript and for their valuable input.

Funding

This research was financially supported by the Colorado State University Agricultural Experimental Station.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel K. Manter or Jorge M. Vivanco.

Electronic supplementary material

ESM 1

(DOCX 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantigoso, H.A., Manter, D.K. & Vivanco, J.M. Differential Effects of Phosphorus Fertilization on Plant Uptake and Rhizosphere Microbiome of Cultivated and Non-cultivated Potatoes. Microb Ecol 80, 169–180 (2020). https://doi.org/10.1007/s00248-020-01486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01486-w

Keywords