Skip to main content

Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates


We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1–6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (−ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4–6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5


  1. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364.

    Article  CAS  Google Scholar 

  2. Jozefkowicz C, Frare R, Fox R, Odorizzi A, Arolfo V, Pagano E, Basigalup D, Ayub N, Soto G (2018) Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions. Theor Appl Genet 131:1111–1123.

    Article  CAS  PubMed  Google Scholar 

  3. Obando M, Correa-Galeote D, Castellano-Hinojosa A, Gualpa J, Hidalgo A, de Dios AJ, Bedmar E, Cassan F (2019) Analysis of the denitrification pathway and greenhouse gases emissions in Bradyrhizobium sp. strains used as biofertilizers in South America. J Appl Microbiol.

  4. Akiyama H, Hoshino YT, Itakura M, Shimomura Y, Wang Y, Yamamoto A, Tago K, Nakajima Y, Minamisawa K, Hayatsu M (2016) Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens. Sci Rep 6:32869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan YK, McCormick WA (2004) Experimental evidence for plasmid-borne nor-nir genes in Sinorhizobium meliloti JJ1c10. Can J Microbiol 50:657–667.

    Article  CAS  PubMed  Google Scholar 

  6. Chan YK, McCormick WA, Watson RJ (1997) A new nos gene downstream from nosDFY is essential for dissimilatory reduction of nitrous oxide by rhizobium (Sinorhizobium) meliloti. Microbiology 143(Pt 8):2817–2824.

    Article  CAS  PubMed  Google Scholar 

  7. Holloway P, McCormick W, Watson RJ, Chan YK (1996) Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of rhizobium meliloti. J Bacteriol 178:1505–1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Torres MJ, Avila S, Bedmar EJ, Delgado MJ (2018) Overexpression of the periplasmic nitrate reductase supports anaerobic growth by Ensifer meliloti. FEMS Microbiol Lett 365.

  9. Bueno E, Mania D, Frostegard A, Bedmar EJ, Bakken LR, Delgado MJ (2015) Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy. Front Microbiol 6:537.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Torres MJ, Rubia MI, de la Pena TC, Pueyo JJ, Bedmar EJ, Delgado MJ (2014) Genetic basis for denitrification in Ensifer meliloti. BMC Microbiol 14:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanz-Sáez Á, Erice G, Aguirreolea J, Irigoyen JJ, Sánchez-Díaz M (2012) Alfalfa yield under elevated CO2 and temperature depends on the Sinorhizobium strain and growth season. Environ Exp Bot 77:267–273.

    Article  Google Scholar 

  12. Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Puente M, Piccinetti C, Soto G, Ayub N (2017) Microevolution rather than large genome divergence determines the effectiveness of legume-rhizobia symbiotic interaction under field conditions. J Mol Evol 85:79–83.

    Article  CAS  PubMed  Google Scholar 

  13. Brambilla S, Frare R, Soto G, Jozefkowicz C, Ayub N (2018) Absence of the nitrous oxide reductase gene cluster in commercial alfalfa inoculants is probably due to the extensive loss of genes during rhizobial domestication. Microb Ecol 76:299–302.

    Article  CAS  PubMed  Google Scholar 

  14. Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Diaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8:e63666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267.

    Article  CAS  PubMed  Google Scholar 

  16. Perez Di Giorgio J, Soto G, Alleva K, Jozefkowicz C, Amodeo G, Muschietti JP, Ayub ND (2014) Prediction of aquaporin function by integrating evolutionary and functional analyses. J Membr Biol 247:107–125.

    Article  CAS  PubMed  Google Scholar 

  17. Wright BE, Reschke DK, Schmidt KH, Reimers JM, Knight W (2003) Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol 48:429–441

    Article  CAS  Google Scholar 

  18. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Datta A, Jinks-Robertson S (1995) Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268:1616–1619

    Article  CAS  Google Scholar 

  20. Beletskii A, Bhagwat AS (1996) Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci U S A 93:13919–13924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sollier J, Cimprich KA (2015) Breaking bad: R-loops and genome integrity. Trends Cell Biol. 25:514–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perez Di Giorgio JA, Lepage E, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N (2019) Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 14:e0214552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28:1384–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wright BE, Schmidt KH, Minnick MF (2013) Kinetic models reveal the in vivo mechanisms of mutagenesis in microbes and man. Mutat Res 752:129–137.

    Article  CAS  PubMed  Google Scholar 

  25. Wright BE, Schmidt KH, Hunt AT, Lodmell JS, Minnick MF, Reschke DK (2011) The roles of transcription and genotoxins underlying p53 mutagenesis in vivo. Carcinogenesis 32:1559–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei H, Dai J, Xia M, Romine MF, Shi L, Beliav A, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J, Qiu D (2016) Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1. Microbiology 162:930–941.

    Article  CAS  PubMed  Google Scholar 

  27. Sorroche FG, Spesia MB, Zorreguieta A, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank Andrea Puebla and Pablo Vera (IABIMO) for their technical support in genomic sequencing.


This work was supported by Grants PICT-2017-0674 and FVT-39 provided to Nicolás Ayub.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nicolás Ayub.

Electronic supplementary material


(FASTA 157 kb)


(FASTA 52 kb)


(FASTA 26 kb)


(FASTA 105 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brambilla, S., Soto, G., Odorizzi, A. et al. Spontaneous Mutations in the Nitrate Reductase Gene napC Drive the Emergence of Eco-friendly Low-N2O-Emitting Alfalfa Rhizobia in Regions with Different Climates. Microb Ecol 79, 1044–1053 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Nitrous oxide
  • NapC
  • Mutants
  • Commercial inoculants
  • Evolution