Skip to main content
Log in

Endophytic Microbiome of Biofuel Plant Miscanthus sinensis (Poaceae) Interacts with Environmental Gradients

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Miscanthus in Taiwan occupies a cline along altitude and adapts to diverse environments, e.g., habitats of high salinity and volcanoes. Rhizospheric and endophytic bacteria may help Miscanthus acclimate to those stresses. The relative contributions of rhizosphere vs. endosphere compartments to the adaptation remain unknown. Here, we used targeted metagenomics to compare the microbial communities in the rhizosphere and endosphere among ecotypes of M. sinensis that dwell habitats under different stresses. Proteobacteria and Actinobacteria predominated in the endosphere. Diverse phyla constituted the rhizosphere microbiome, including a core microbiome found consistently across habitats. In endosphere, the predominance of the bacteria colonizing from the surrounding soil suggests that soil recruitment must have subsequently determined the endophytic microbiome in Miscanthus roots. In endosphere, the bacterial diversity decreased with the altitude, likely corresponding to rising limitation to microorganisms according to the species-energy theory. Specific endophytes were associated with different environmental stresses, e.g., Pseudomonas spp. for alpine and Agrobacterium spp. for coastal habitats. This suggests Miscanthus actively recruits an endosphere microbiome from the rhizosphere it influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clifton-Brown J, Schwarz K-U, Hastings A (2015) History of the development of Miscanthus as a bioenergy crop: from small beginnings to potential realisation. Biol Environ Proc R Ir Acad 115B:45–57. https://doi.org/10.3318/bioe.2015.05

    Article  Google Scholar 

  2. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227. https://doi.org/10.1016/S0961-9534(00)00032-5

    Article  CAS  Google Scholar 

  3. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115. https://doi.org/10.1104/pp.109.139162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, McIsaac GF, David MB, Voigt TB, Boersma NN, Long SP (2010) Chapter 3 - Miscanthus: a promising biomass crop. In: Kader J-C, Delseny M (eds) Advances in Botanical Research, vol 56. Academic Press, pp 75-137. doi:https://doi.org/10.1016/B978-0-12-381518-7.00003-0

  5. Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manage 143:123–134. https://doi.org/10.1016/j.jenvman.2014.04.027

    Article  CAS  PubMed  Google Scholar 

  6. Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC (2014) Miscanthus as a productive biofuel crop for phytoremediation. Crit Rev Plant Sci 33:1–19. https://doi.org/10.1080/07352689.2014.847616

    Article  Google Scholar 

  7. Sun W, Ubierna N, Ma J-Y, Walker BJ, Kramer DM, Cousins AB (2014) The coordination of C4 photosynthesis and the CO2-concentrating mechanism in maize and Miscanthus × giganteus in response to transient changes in light quality. Plant Physiol 164:1283–1292. https://doi.org/10.1104/pp.113.224683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stavridou E, Hastings A, Webster RJ, Robson PRH (2017) The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. GCB Bioenergy 9:92–104. https://doi.org/10.1111/gcbb.12351

    Article  CAS  Google Scholar 

  9. Huang CL, Ho CW, Chiang YC, Shigemoto Y, Hsu TW, Hwang CC, Ge XJ, Chen C, Wu TH, Chou CH, Huang HJ, Gojobori T, Osada N, Chiang TY (2014) Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus/sinensis complex (Poaceae). Plant J 80:834–847. https://doi.org/10.1111/tpj.12676

    Article  CAS  PubMed  Google Scholar 

  10. Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA 109:14058–14062. https://doi.org/10.1073/pnas.1202319109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rho H, Hsieh M, Kandel SL, Cantillo J, Doty SL, Kim SH (2018) Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb Ecol 75:407–418. https://doi.org/10.1007/s00248-017-1054-3

    Article  PubMed  Google Scholar 

  12. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  13. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350. https://doi.org/10.1016/S1369-5266(00)00183-7

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertility Soils 45:645–653. https://doi.org/10.1007/s00374-009-0376-9

    Article  CAS  Google Scholar 

  15. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. https://doi.org/10.1007/s00253-007-1077-7

    Article  CAS  PubMed  Google Scholar 

  16. Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55. https://doi.org/10.1007/s11274-008-9859-3

    Article  Google Scholar 

  17. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  18. Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2017) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9:57–77. https://doi.org/10.1111/gcbb.12364

    Article  CAS  Google Scholar 

  19. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506. https://doi.org/10.2307/3544109

    Article  Google Scholar 

  21. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 10:3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x

    Article  Google Scholar 

  22. Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  23. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  24. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbo CL, Wishart DS (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 40:W88–W95. https://doi.org/10.1093/nar/gks497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0

    Article  Google Scholar 

  29. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

  32. Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25. https://doi.org/10.1186/s40168-017-0241-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pfeiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, Sessitsch A (2017) Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fiw242

  34. Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351. https://doi.org/10.1111/1462-2920.12925

    Article  PubMed  Google Scholar 

  35. Cucio C, Engelen AH, Costa R, Muyzer G (2016) Rhizosphere microbiomes of European seagrasses are selected by the plant, but are not species specific. Front Microbiol 7:440. https://doi.org/10.3389/fmicb.2016.00440

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Ludewig U (2019) Nitrogen-dependent bacterial community shifts in root, rhizome and rhizosphere of nutrient-efficient Miscanthus × giganteus from long-term field trials. GCB Bioenergy. https://doi.org/10.1111/gcbb.12634

  37. Fan K, Weisenhorn P, Gilbert JA, Chu H (2018) Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 125:251–260. https://doi.org/10.1016/j.soilbio.2018.07.022

    Article  CAS  Google Scholar 

  38. de Wit R, Bouvier T (2006) 'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758. https://doi.org/10.1111/j.1462-2920.2006.01017.x

    Article  PubMed  Google Scholar 

  39. Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press,

  40. Hallmann J (2001) Plant interactions with endophytic bacteria. CABI Publishing, New York

    Book  Google Scholar 

  41. Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  42. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151. https://doi.org/10.1038/ncomms12151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiang Y-C, Schaal BA, Chou C-H, Huang S, Chiang T-Y (2003) Contrasting selection modes at the Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot 90:561–570

    Article  CAS  PubMed  Google Scholar 

  44. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84. https://doi.org/10.1016/j.soilbio.2007.06.024

    Article  CAS  Google Scholar 

  45. Berney M, Cook GM (2010) Unique flexibility in energy metabolism allows Mycobacteria to combat starvation and hypoxia. PLOS ONE 5:e8614. https://doi.org/10.1371/journal.pone.0008614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hennessee CT, Seo J-S, Alvarez AM, Li QX (2009) Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. Int J Syst Evol Microbiol 59:378–387. https://doi.org/10.1099/ijs.0.65827-0

    Article  CAS  PubMed  Google Scholar 

  47. Timm CM, Carter KR, Carrell AA, Jun S-R, Jawdy SS, Vélez JM, Gunter LE, Yang Z, Nookaew I, Engle NL, Lu T-YS, Schadt CW, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Pelletier DA, Weston DJ (2018) Abiotic stresses shift belowground populus-associated bacteria toward a core stress microbiome. mSystems 3:e00070–e00017. https://doi.org/10.1128/mSystems.00070-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11:2691–2704. https://doi.org/10.1038/ismej.2017.118

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750. https://doi.org/10.3732/ajb.1200572

    Article  PubMed  Google Scholar 

  50. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. https://doi.org/10.1007/s00253-015-6487-3

    Article  CAS  PubMed  Google Scholar 

  51. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470. https://doi.org/10.1111/j.1574-6941.2006.00082.x

    Article  CAS  PubMed  Google Scholar 

  52. Ekimova GA, Fedorov DN, Doronina NV, Trotsenko YA (2015) 1-aminocyclopropane-1-carboxylate deaminase of the aerobic facultative methylotrophic actinomycete Amycolatopsis methanolica 239. Microbiology 84:584–586. https://doi.org/10.1134/s0026261715040074

    Article  CAS  Google Scholar 

  53. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630. https://doi.org/10.1111/j.1399-3054.1997.tb03068.x

    Article  CAS  Google Scholar 

  54. Shen X, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H (2014) Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol 86:303–317. https://doi.org/10.1007/s11103-014-0230-9

    Article  CAS  PubMed  Google Scholar 

  55. Sun H, Li Y, Xu H (2018) Is endophyte-plant co-denitrification a source of nitrous oxides emission? —an experimental investigation with soybean. Agronomy 8:108. https://doi.org/10.3390/agronomy8070108

    Article  CAS  Google Scholar 

  56. Zhang L, Song L, Wang B, Shao H, Zhang L, Qin X (2018) Co-effects of salinity and moisture on CO2 and N2O emissions of laboratory-incubated salt-affected soils from different vegetation types. Geoderma 332:109–120. https://doi.org/10.1016/j.geoderma.2018.06.025

    Article  CAS  Google Scholar 

  57. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547. https://doi.org/10.1023/a:1020501420831

    Article  CAS  PubMed  Google Scholar 

  58. Picard C, Bosco M (2008) Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 95:1–16. https://doi.org/10.1007/s00114-007-0286-3

    Article  CAS  PubMed  Google Scholar 

  59. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144. https://doi.org/10.1007/s00284-007-9058-8

    Article  CAS  PubMed  Google Scholar 

  60. Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43. https://doi.org/10.1016/j.ejsobi.2010.11.005

    Article  CAS  Google Scholar 

  61. Mishra PK, Bisht SC, Mishra S, Selvakumar G, Bisht JK, Gupta HS (2012) Coinoculation of Rhizobium leguminosarum-PR1 with a cold tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum L.). J Plant Nutr 35:243–256. https://doi.org/10.1080/01904167.2012.636127

    Article  CAS  Google Scholar 

  62. Nissinen RM, Männistö MK, van Elsas JD (2012) Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiol Ecol 82:510–522. https://doi.org/10.1111/j.1574-6941.2012.01464.x

    Article  CAS  PubMed  Google Scholar 

  63. Prévost D, Drouin P, Antoun H (1999) The potential use of cold-adapted rhizobia to improve symbiotic nitrogen fixation in legumes cultivated in temperate regions. In: Margesin R, Schinner F (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, pp 161–176. https://doi.org/10.1007/978-3-642-58607-1_11

    Chapter  Google Scholar 

Download references

Acknowledgments

We are indebted to the Ministry of Science and Technology (106-2621-B-006-001-MY3) and National Cheng Kung University (Aim for the Top University Project) for supporting research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzen-Yuh Chiang.

Electronic supplementary material

Table S1

OTU distribution table (XLSX 398 kb)

Fig. S1

Venn diagrams displaying the core microbiome shared by all individuals of Miscanthus sinensis. (A) Rhizosphere; (B) endosphere (PNG 44 kb)

Fig. S2

Relative abundance of core microbiomes in rhizosphere and endosphere of Miscanthus sinensis (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CL., Sarkar, R., Hsu, TW. et al. Endophytic Microbiome of Biofuel Plant Miscanthus sinensis (Poaceae) Interacts with Environmental Gradients. Microb Ecol 80, 133–144 (2020). https://doi.org/10.1007/s00248-019-01467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01467-8

Keywords

Navigation